110Fa19t3aSoln

1a) We are told the system is moving down $(v<0)$ while slowing down ($a \& v$ have opposite signs).
This tells us the system is accelerating upwards!

1b) Since block two is accelerating upwards, we know the upwards normal force must be larger than the net downwards force $(\Sigma \vec{F}=m \vec{a})$. The force equation in the vertical direction is

$$
\begin{aligned}
& n_{1 o n 2}-n_{3 o n 2}-m_{2} g=m_{2} a \\
& n_{1 o n 2}=n_{3 o n 2}+m_{2} g+m_{2} a
\end{aligned}
$$

In this equation, all terms on the right side are positive.

$$
n_{1 o n 2}>n_{3 o n 2}
$$

1c) By Newton's THIRD law, two objects exert forces of equal magnitude (but opposite direction) on each other regardless of their masses or acceleration.

$$
n_{1 o n 2}=n_{2 o n 1}
$$

2a) We expect the normal force upwards \& weight downwards balance.
There is a frictional force to the left on this block.
Since no other force exists in the horizontal direction, we know acceleration points to the left $(-\hat{\imath})$.

2b) There is a frictional force to the left on this block ($-\hat{\imath}$).

2c) Once the block comes to rest, no friction is present!

3a)

$\Sigma F_{x}: F \cos \theta-n_{12}=(2 m) \frac{g}{5}$	$\Sigma F_{x}: n_{12}=(m) \frac{g}{5}$	$\Sigma F_{x}: F \cos \theta=(3 m) \frac{g}{5}$
$\Sigma F_{y}: F \sin \theta+n_{2}=2 m g$	$\Sigma F_{y}: n_{1}=m g$	$\Sigma F_{y}: F \sin \theta+n=3 m g$

3b) The horizontal system force equation gives

$$
\begin{aligned}
F & =\frac{3 m g}{5 \cos \theta} \\
F & =\frac{3 m g}{5 \cos 15.0^{\circ}} \\
\boldsymbol{F} & \approx \mathbf{0 . 6 2 1} \mathbf{m g}
\end{aligned}
$$

3c) Consider the horizontal force equation for $m_{1} \ldots$ the equation is already solved for n_{12} !

$$
n_{12}=0.200 \mathrm{mg}
$$

4a) We are asked for the largest angle for which the block remains at rest.
This implies two things:

1. Acceleration is zero.
2. The block is on the verge of slipping; use $f=\mu_{s} n$.

The FBD appropriate is shown at right.

$\Sigma F_{x}=m a_{x}$	$\Sigma F_{y}=m a_{y}$
$m g \sin \theta-f=0$	$n-m g \cos \theta=0$
$f=m g \sin \theta$	$n=m g \cos \theta$

An interesting way to solve this problem is to take a ratio!

$$
\frac{f}{n}=\frac{m g \sin \theta}{m g \cos \theta}
$$

When we are at angle $\theta_{\max }$ we can use $f=\mu_{s} n$.

$$
\begin{gathered}
\frac{\mu_{s} n}{n}=\frac{m g \sin \theta_{\max }}{m g \cos \theta_{\max }} \\
\mu_{s}=\tan \theta_{\max } \\
\theta_{\max }=\tan ^{-1} \mu_{s} \\
\theta_{\max }=\tan ^{-1} 0.888 \\
\boldsymbol{\theta}_{\max }=\mathbf{4 1 . 6 ^ { \circ }}
\end{gathered}
$$

4b) For angles larger than $\theta_{\max }$, the block should slide and one should use $f=\mu_{k} n$.
For angles less than $\theta_{\max }$, the block remains at rest but is no longer on the verge of slipping $\left(f \neq \mu_{s} n\right)!!!!$ We can still use the same FBD.

$$
\begin{gathered}
f=m g \sin \theta \\
f=(0.300 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sin 32.1^{\circ} \\
\boldsymbol{f}=\mathbf{1} .562 \mathrm{~N}
\end{gathered}
$$

Note: when the first digit of a numerical result is 1 , we typically include an extra sig fig.

4c) Notice, in the derivation shown in part a, that $\theta_{\max }$ does not depend on mass.
We expect $\boldsymbol{\theta}_{\text {max }}$ remains the same.

4d) Notice, in the derivation shown in part b , that f does depend on mass.
We expect \boldsymbol{f} increases.

5a) FBDs and force equations are shown below.
Note: in part a we are asked for the largest possible applied force (magnitude) that does not cause motion.
Once again, the problem is on the verge of slipping.
We can set $a=0$ and use $f=\mu_{s} n$ for part a...

$\Sigma F_{x}: \quad F-T-f=m_{1} a$	$\Sigma F_{x}: \quad T-m_{2} g=m_{2} a$	
$\Sigma F_{y}:$	$n=m_{1} g$	

Adding the ΣF_{x} : equations together gives

$$
\begin{gathered}
F-T-f=m_{1} a \\
+\quad T-m_{2} g=m_{2} a \\
F-m_{2} g-f=\left(m_{1}+m_{2}\right) a
\end{gathered}
$$

Now sub in $f=\mu_{s} n=\mu_{s} m_{1} g$ and $a=0$.

$$
F-m_{2} g-\mu_{s} m_{1} g=0
$$

Rearrange and solve for F.

$$
F=m_{2} g+\mu_{s} m_{1} g
$$

Finally, use $m_{1}=m, m_{2}=2 m, \& \mu_{s}=0.888$.

$$
\begin{gathered}
F=(2 m) g+(0.888)(m) g \\
F=2.888 m g \\
\boldsymbol{F} \approx \mathbf{2 . 8 9 m g}
\end{gathered}
$$

5b) In part b we are told the applied force (magnitude) is $F=5 \mathrm{mg}$.
Because this is larger than the previous result, we know the blocks move!
This implies $a \neq 0$ and $f=\mu_{k} n$.
Notice the FBDs are identical!
First I will use the FBDs to solve for a, then I will use that a to solve for T.

$$
\begin{gathered}
F-m_{2} g-\mu_{k} m_{1} g=\left(m_{1}+m_{2}\right) a \\
a=\frac{F-m_{2} g-\mu_{k} m_{1} g}{m_{1}+m_{2}} \\
a=\frac{5 m g-2 m g-0.777 m g}{3 m} \\
a=0.741 g
\end{gathered}
$$

Now use the force equation from m_{2}.

$$
\begin{gathered}
T-m_{2} g=m_{2} a \\
T=m_{2} g+m_{2} a \\
T=2 m g+2 m(0.741 g) \\
T=3.482 m g \\
\mathbf{T} \approx \mathbf{3 . 4 8 m g}
\end{gathered}
$$

Extra Credit:

Without loss of generality, we can align one force along the horizontal axis.
I choose to align the horizontal axis with the larger force $\left(\vec{F}_{2}\right)$.

In this case, I chose to define the angle from the positive x-axis.
This differs from how we typically do problems with free body diagrams.
If you are clever, you could use the law of cosines.
If you are not clever, it is straightforward to derive it.

$$
\begin{gathered}
\vec{F}_{\text {Net }}=\vec{F}_{2}+\vec{F}_{1} \\
\vec{F}_{\text {Net }}=\left(F_{2}+F_{1} \cos \theta\right) \hat{\imath}+\left(F_{1} \sin \theta\right) \hat{\jmath} \\
F_{\text {Net }}^{2}=\left(F_{2}+F_{1} \cos \theta\right)^{2}+\left(F_{1} \sin \theta\right)^{2} \\
F_{\text {Net }}^{2}=F_{2}^{2}+F_{1}^{2} \cos ^{2} \theta+2 F_{2} F_{1} \cos \theta+F_{1}^{2} \sin ^{2} \theta \\
F_{\text {Net }}^{2}=F_{2}^{2}+F_{1}^{2}+2 F_{2} F_{1} \cos \theta \\
\cos \theta=\frac{F_{\text {Net }}^{2}-F_{2}^{2}-F_{1}^{2}}{2 F_{2} F_{1}} \\
\theta=\cos ^{-1}\left(\frac{F_{\text {Net }}^{2}-F_{2}^{2}-F_{1}^{2}}{2 F_{2} F_{1}}\right)
\end{gathered}
$$

Notice the units of the term inside the parentheses will all cancel!

$$
\begin{gathered}
\theta=\cos ^{-1}\left(\frac{2.00^{2}-4.00^{2}-3.00^{2}}{2(4.00)(3.00)}\right) \\
\theta=\cos ^{-1}\left(\frac{2.00^{2}-4.00^{2}-3.00^{2}}{2(4.00)(3.00)}\right) \\
\boldsymbol{\theta} \approx \mathbf{1 5 1 . 0 ^ { \circ }}
\end{gathered}
$$

