161sp22t2aSoln

Distribution on this page. Solutions begin on next page.

1a) Force arrows not drawn to scale.
I threw in a system FBD even though it was not required.

1b) $F=\frac{(4 m) \frac{g}{12}}{\cos 15.0^{\circ}}=0.345 \mathrm{mg}$

1c) $f_{13}=m \frac{g}{12}=0.0833 \mathrm{mg}$
In this problem, there is no indication of the upper block being on the verge of slipping.
Most common mistake is to think $f=\mu_{s} n$ applies.

If you are curious, one can determine $n_{13}=F \sin \phi+3 \mathrm{mg}=3.089 \mathrm{mg}$.
The maximum possible friction between the two blocks (using $F=0.345 \mathrm{mg}$) is thus $f_{13 \max }=\mu_{s} n_{13}=2.47 \mathrm{mg}$. Again, we see we only require $f_{13}=0.0833 \mathrm{mg}$ to cause the lower block to accelerate at rate $\frac{g}{12}$ (even though more friction is possible between the two blocks).
2) Before and after pictures shown below.

Normal force does zero work on the block (normal force always perpendicular to displacement).
Friction does zero work (we were told friction was negligible in problem statement).

$$
\begin{gathered}
K_{i}+U_{G i}+U_{S i}+W_{\text {ext }}=K_{f}+U_{G f}+U_{S f} \\
0+U_{G i}+0+0=0+0+U_{S f} \\
U_{G i}=U_{S f} \\
m g R(1-\cos \theta)=\frac{1}{2} k d^{2} \\
\boldsymbol{R}=\frac{\boldsymbol{k} \boldsymbol{d}^{2}}{\mathbf{2 m g}(\mathbf{1}-\cos \boldsymbol{\theta})}
\end{gathered}
$$

3a) Remember the analogy with a marble on a track is not perfect.
While a marble moves in both the x and y directions, the forces on our particle are only left or right.
At $\boldsymbol{x}=35.0 \mathrm{~nm}$ the force is to the left on our particle (slope >0 implies $\boldsymbol{F}_{\boldsymbol{x}}<0$).

3b) The particle starts at $x=+35.0 \mathrm{~nm}$ and is moving left.
The particle must reach position $x=+10.0 \mathrm{~nm}$ with some non-zero speed to make it to $x=-40.0 \mathrm{~nm}$.
To find minimum initial speed, do energy conservation assuming exactly zero speed at $x=+10.0 \mathrm{~nm}$.
Get the values of $U_{i} \& U_{f}$ from the plot!
Note: unless otherwise specified, on these types of problems assume the conservative force is the only force acting on the particle. As such, we needn't worry about work done by non-conservative or external forces.

$$
\begin{gathered}
K_{i}+U_{i}=K_{f}+U_{f} \\
\frac{1}{2} m v_{i}^{2}+U_{i}=0+U_{f} \\
\frac{1}{2} m v_{i}^{2}=U_{f}-U_{i} \\
\frac{1}{2} m v_{i}^{2}=\Delta U \\
v_{i}=\sqrt{\frac{2}{m} \Delta U}
\end{gathered}
$$

No need for \pm here since we are determining speed (a positive parameter).
Again, we are concerned with ΔU between $x_{i}=35 \mathrm{~nm}$ and the trouble spot $x_{f}=10 \mathrm{~nm}$.

$$
\begin{gathered}
v_{i}=\sqrt{\frac{2}{6.00 \times 10^{-12} \mathrm{~kg}}\left(200 \times 10^{-3} \mathrm{~J}\right)} \\
v_{\boldsymbol{i}}=\mathbf{2 . 5 8 \times 1 0 ^ { 5 } \frac { \mathbf { m } } { \mathrm { s } } = \mathbf { 2 5 8 } \frac { \mathrm { km } } { \mathrm { s } }}
\end{gathered}
$$

4) I find the solution to this problem really interesting for some reason...

Consider the side view and associated FBD shown below.

Force equations give

$$
\begin{aligned}
n \sin \phi & =m g \\
n \cos \phi & =m a_{c}
\end{aligned}
$$

Taking the ratio of these equations gives

$$
\begin{aligned}
& \tan \phi=\frac{g}{a_{c}} \\
& a_{c}=\frac{g}{\tan \phi} \\
& \frac{v^{2}}{r}=\frac{g}{\tan \phi}
\end{aligned}
$$

Don't forget to write the answer in terms of given parameters!
In this case we must replace r in terms of the knowns $h \& \phi \ldots$

$$
\frac{v^{2}}{h \tan \phi}=\frac{g}{\tan \phi}
$$

Here's the cool part...the angle drops out!!!
This means the result would be the same for any cone angle, as long as we are distance h above the cone's apex!

$$
v=\sqrt{g h}
$$

5a) Our given equation was

$$
v_{x}(t)=v_{0}+555 t^{3}
$$

This will only makes sense if we assume

$$
[555]=\frac{\mathrm{m}}{\mathrm{~s}^{4}}
$$

5b) Answer: 179.8 kN.

We know $F_{x}=m a_{x}$.
Take derivative of v_{x} with respect to time to get $a_{x}=1665 t^{2}$.
Multiply by mass to get $F_{x}(t)=4.995 \times 10^{5} t^{2}$
Plug in $t=600.0 \mathrm{~ms}=0.6000 \mathrm{~s}$.

5c) Answer: 1. 276 GW.
Recall instantaneous power is given by

$$
\mathcal{P}=\vec{F} \cdot \vec{v}
$$

In 1D motion this simplifies to

$$
\begin{gathered}
\mathcal{P}=F_{x} v_{x} \\
\mathcal{P}=\left(4.995 \times 10^{5} t^{2}\right)\left(2.00 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}+555 t^{3}\right)
\end{gathered}
$$

Plugging in $t=1.000 \mathrm{~s}$ gives the result.

6a) \& 6b) I thought of two ways to approach this problem.

1. Don't spend all day thinking about the direction of the rod's force; pick one and see what happens...

- If you get a negative result for your force, the force must be opposite the direction drawn.

2. Determine the critical value of rotation rate which causes zero force from the rod on m_{1} at top of circle.

- If our actual rotation rate is larger than the critical value, rod exerts force downwards.
- If our actual rotation rate is smaller than the critical value, rod exerts force upwards.

I choose to assume the force exerted by the rod on m_{1} was downwards.
According to my choices, the force equation becomes

$$
\begin{gathered}
F_{r o d}+m g=m a_{c} \\
F_{\text {rod }}+m g=m r \omega^{2} \\
F_{\text {rod }}=m r \omega^{2}-m g \\
F_{\text {rod }}=m\left(r \omega^{2}-g\right)
\end{gathered}
$$

Upon plugging in numbers...WATCH THOSE UNITS!

- $\omega=55.5 \frac{\mathrm{rev}}{\mathrm{min}} \times \frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=5.8 \underline{1} 2 \frac{\mathrm{rad}}{\mathrm{s}}$
- $m=33.3 \mathrm{~g}=0.0333 \mathrm{~kg}$
- $r=\frac{\text { diameter }}{2}=0.222 \mathrm{~m}$

My force equation gave the result $F_{\text {rod }}=-76.6 \mathrm{mN}$.
Notice a negative force downwards is equivalent to a positive force upwards.
The force magnitude is $76.6 \mathbf{~ m N}$ directed UPWARDS.

As a check, what rotation rate causes zero rod force on m_{1} at the top of the circle?

$$
\begin{gathered}
F_{\text {rod }}+m g=m a_{c} \\
m g=m r \omega_{\text {critical }}^{2} \\
\omega_{\text {critical }}=\sqrt{\frac{g}{r}}=6.64 \frac{\mathrm{rad}}{\mathrm{~s}}
\end{gathered}
$$

Our actual rotation rate is smaller: $\omega=5.812 \frac{\mathrm{rad}}{\mathrm{s}}$.

- If $\omega<\omega_{\text {critical }}$, we have a slow rotation. The rod must support part of the weight ($F_{\text {rod }}$ points $u p$).
- If $\omega>\omega_{\text {critical }}$, the rod must pull down on m_{1} to keep it in the circular motion $\left(F_{\text {rod }}\right.$ points down).

6c) Work is positive when the force has a component pointing in the same direction as displacement.
Gravity does positive work on the way down; negative work on the way up.

6d) The rod's force on m_{1} is always directed towards the center of the circle.
Since the mass is moving around the circle, this force is always perpendicular to displacement!
Work done by the rod's force is zero.

7a) The masses exert the same amount of force on each other (in accordance with Newton's $3^{\text {rd }}$ law).
$7 b$) The masses exert the same amount of force on each other (in accordance with Newton's $3^{\text {rd }}$ law). This is true if moving with constant speed or if they are accelerating.

7c) The normal force between the blocks acts downwards on m_{2}.
While moving downwards, this force does positive work.
This is true regardless of acceleration.

7d)
Action: The earth exerts a gravitational force directed downwards on mass 2 .
Reaction: Mass 2 exerts a gravitational force directed upwards on the earth.

