161 Spring 2023 T1A Once the exam has officially started, remove the top sheet. The remaining sheets comprise your exam. It is each student's individual responsibility to ensure the instructor has received her or his completed exam. Any exams not received by the instructor earn zero points. Smart watches, phones, or other devices (except scientific calculators) are not permitted during the exam.

$V_{\text {sphere }}=\frac{4}{3} \pi R^{3}$	$V_{\text {box }}=L W H$	$V_{c y l}=\pi R^{2} H$	$\rho=\frac{M}{V}$		
$A_{\text {sphere }}=4 \pi R^{2}$	$V=\left(A_{\text {base }}\right) \times($ height $)$	$A_{\text {circle }}=\pi R^{2}$	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$		
$C=2 \pi R$	$A_{\text {rect }}=L W$	$A_{\text {cylside }}=2 \pi R H$			
$160 \underline{9} \mathrm{~m}=1 \mathrm{mi}$	$12 \mathrm{in}=1 \mathrm{ft}$	$60 \mathrm{~s}=1 \mathrm{~min}$	$1000 \mathrm{~g}=1 \mathrm{~kg}$		
$2.54 \mathrm{~cm}=1 \mathrm{in}$	$1 \mathrm{cc}=1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$	$60 \mathrm{~min}=1 \mathrm{hr}$	$100 \mathrm{~cm}=1 \mathrm{~m}$		
$1 \mathrm{~cm}=10 \mathrm{~mm}$	1 yard $=3 \mathrm{ft}$	$3600 \mathrm{~s}=1 \mathrm{hr}$	$1 \mathrm{~km}=1000 \mathrm{~m}$		
1 furlong $=220$ yards	$528 \underline{\mathrm{fft}}=1 \mathrm{mi}$	$24 \mathrm{hrs}=1$ day	$1 \mathrm{rev}=2 \pi \mathrm{rad}=360^{\circ}$		
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$	$G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$	$P_{0}=1.0 \times 10^{5} \mathrm{~Pa}$	$1 \mathrm{eV}=1.60 \underline{2} \times 10^{-19} \mathrm{~J}$		
$1 \mathrm{~N}=1 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}$	$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}$	$1 \mathrm{~Pa}=1 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$			
$x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}$	$v_{f x}^{2}=v_{i x}^{2}+2 a_{x}(\Delta x)$	$v_{f x}=v_{i x}+a_{x} t$	$r=\sqrt{x^{2}+y^{2}}$		
$\vec{A} \cdot \vec{B}=A B \cos \theta_{A B}$	$\\|\vec{A} \times \vec{B}\\|=A B \sin \theta_{A B}$	$\begin{aligned} & \sin (A \pm B) \\ & =\sin A \cos B \pm \cos A \sin B \end{aligned}$	$\begin{aligned} & \cos (A \pm B) \\ & =\cos A \cos B \mp \sin A \sin B \end{aligned}$		
$\vec{v}_{a e}+\vec{v}_{e b}=\vec{v}_{a b}$	$\hat{r}=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}$	$\hat{\theta}=-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}$			
$a_{t a n}=r \alpha$	$a_{c}=\frac{v^{2}}{r}=r \omega^{2}$	$\vec{a}=a_{r} \hat{r}+a_{\text {tan }} \hat{\theta}$	$\vec{a}=a_{c}(-\hat{r})+a_{t a n} \hat{\theta}$		
$\Sigma \vec{F}=m \vec{a}$	$f \leq \mu n$	$F_{G}=\frac{G m M}{r^{2}}(-\hat{r})$	$U_{G}=-\frac{G m M}{r}$		
$T K E=\frac{1}{2} m v^{2}$	$R K E=\frac{1}{2} I \omega^{2}$	$U_{S}=S P E=\frac{1}{2} k x^{2}$	$U_{G}=G P E=m g h$		
$E_{i}+\underset{\text { non-con }}{\text { or ext }}=E_{f}$	$\Delta K E=W_{\text {ext.\& }}$ non-con	$W=F d \cos \theta=F_{\\| \\|} d$	$W=\int F_{x} d x$		
$\Delta U=-W=-\int_{i}^{f} \vec{F} \cdot d \vec{s}$	$F_{x}=-\frac{d}{d x} U(x)$	$\mathcal{P}_{\text {inst }}=\frac{d E}{d t}=\vec{F} \cdot \vec{v}$	$\mathcal{P}_{\text {avg }}=\frac{\Delta E}{\Delta t}=\frac{\text { Work }}{\text { time }}$		
$\vec{J}=\Delta \vec{p}=\vec{F} \Delta t$	$\vec{p}=m \vec{v}$	$x_{\mathrm{CM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$	$x_{\mathrm{CM}}=\frac{\int x d m}{\int d m}$		
$\vec{\tau}=\vec{r} \times \vec{F}$	$\Sigma \vec{\tau}=I \vec{\alpha}$	$L=I \omega=m v r_{\perp}$	$\mathcal{P}_{\text {inst }}=\vec{\tau} \cdot \vec{\omega}$		
$s=r \Delta \theta$	$v=r \omega$	$a_{t a n}=r \alpha$	$a_{c}=\frac{v^{2}}{r}=r \omega^{2}$		
$I_{\text {laxis }}=I_{\mathrm{CM}}+m d^{2}$	$I_{z z}=I_{x x}+I_{y y}$	$I=\int r^{2} d m$	$\frac{F}{A}=E \frac{\Delta L}{L_{0}}$		
$P=\frac{F}{A}$	$P_{\text {gauge }}=P_{\text {abs }}-P_{\text {ambient }}$	$B=\rho_{f} V_{\text {disp }} g$	$A_{1} v_{1}=A_{2} v_{2}$		
$P(h)=P_{0}+\rho g h$	$P+\frac{1}{2} \rho v^{2}+\rho g h=\text { constant }$	$R=\frac{\pi r^{4} \Delta P}{8 \eta L}$	$F=\eta A \frac{\Delta v_{x}}{\Delta y}$		

Prefix	Abbreviation	$\mathbf{1 0}^{\text {? }}$		Prefix	Abbreviation	$\mathbf{1 0}^{?}$
Giga	G	10^{9}		milli	m	10^{-3}
Mega	M	10^{6}		micro	μ	10^{-6}
kilo	k	10^{3}		nano	n	10^{-9}
centi	c	10^{-2}		pico	p	10^{-12}
				femto	f	10^{-15}

A robot moves horizontally in 1D motion.
The robot is initially 30.0 m to the right of the origin.
During the first 2.00 s of motion, the robot moves to the left with constant speed $8.00 \frac{\mathrm{~m}}{\mathrm{~s}}$.
During the next 4.00 s the robot slows down at a constant rate until it comes to rest.
*1a) How far does the robot travel during the first 2.00 s of motion?
*1b) Is acceleration positive or negative during the last 4.00 s of motion?
*1c) What acceleration magnitude is required during the final 4.00 s of motion?
*1d) What is the robot's displacement during the final 4.00 s of motion?
****1e\&1f) Sketch a plots of position versus time \& velocity versus time for the robot.
I will give 1 point for the first 2.00 s and 1 point for the last 4.00 s (on each graph).
The last 4.00 s of the position graph are time consuming for 1 point.

A physics equation is

$$
c a=U+\beta q^{2}
$$

Associated data is shown in the table below.

$c(\mathrm{~kg} \cdot \mathrm{~m})$	$a\left(\frac{\mathrm{~mm}}{\mathrm{~s}^{2}}\right)$	$U\left(\frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{s^{2}}\right)$	$\beta\left(\frac{\mathrm{kg}}{\mathrm{s}^{2}}\right)$
21.25	30.0	0.555	6.00×10^{7}

*2a) Solve this equation algebraically for q.
****2b) Compute a numerical value for q using:

2 a	
2 b	

- correct engineering notation
- best choice of prefix with correct units
- rounding to the appropriate number of sig figs

A metal plate has density ρ and thickness t. The plate was created by removing a semi-circular segment from the left half of a square plate (figure drawn to scale). The mass of the plate (after the $1 / 2-$ circle chunk was removed) is m.
****3) Determine the side length of the original square plate in terms of known quantities. Simplify your work for credit. The final answer must be written as a decimal number (in the numerator) with 3 sig figs times an algebraic expression using the stated parameters.

A multi-stage rocket is observed just after the instant of separation (se figure at right). The spacecraft (labeled 2) moves with speed $222 \frac{\mathrm{~m}}{\mathrm{~s}}$ at an angle of 77.7° relative to earth. The booster stage (labeled 1) moves straight up with speed $155.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ relative to the earth. ***4) How fast is the booster moving relative to the spaceship at this instant?

A drone travels in two straight line displacements. The first displacement covers 5.75 m directed 32.1° west of south. After the second displacement, the drone's final position is 4.25 m from the origin angled 65.4° above the east axis (in the $x z$-plane). *5a) Write the first displacement vector in Cartesian form. **5b) Write a Cartesian form unit vector for the direction of the final position vector. **5c) Determine the angle between the first displacement and the final position. ***5d) Determine the magnitude of the second displacement.

At time $t=0$, two objects at the origin move to the right. Object 1 has velocity described by

$$
v_{1}(t)=v_{0}-k t^{2}
$$

where k is a positive constant. Object 2 moves with constant rate $\frac{2}{5} v_{0}$.
6a) Is object one experiencing to constant acceleration?

Yes	No	Impossible to determine without more information

**6b) Determine the position of object 1 as a function of time.
**6c) How far does object 1 travel before reversing direction?
Answer as a decimal number with 3 sig figs times $\sqrt{\frac{v_{0}^{3}}{k}}$.
****6d) Determine the velocity of object 1 when object 2 catches up to it (after $t=0$)? Answer as a decimal number with 3 sig figs times $\boldsymbol{v}_{\mathbf{0}}$.

A ball of negligible size is placed on the edge of a building of height h. The ball is kicked horizontally with speed v_{0} towards a parabolic ramp. Using the coordinate system shown in the figure, the height (y) of the parabolic ramp is given by

$$
y=\frac{\alpha x^{4}}{2}
$$

*7a) Determine the units assumed for the constant α. Assume the 2 is dimensionless. *****7b) Determine horizontal displacement between launch and impact positions.
This answer ends up looking exceptionally ugly.

Simplify it as best you can after all other work on the test is done.

7 a	
7 bb	

Page intentionally left blank for scratch paper.

