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1a) The probe exerts a force on the ship with magnitude equal to 𝐹. 

1b) By Newton’s 3rd Law the force exerted by ship on probe must be the same size as the force exerted by the probe 

on the ship.  This is true regardless of the masses. 

 

1c) It is impossible to determine without the masses. 

1d) By Newton’s 2nd law we know �⃑� =
�⃑�𝑁𝐸𝑇

𝑚
. 

Since the two objects are in deep space, the only force acting on each object comes from the other object. 

We know from Newton’s 3rd Law the two objects exert equal forces on each other. 

Unfortunately, without knowing the masses involved, we cannot determine which object has more acceleration. 

 

Note: on the original version of the exam I accidentally said the two objects were in orbit instead of in deep space.  

Being in orbit actually complicates the solution for 1c/d (but not 1a/b). 

 

Obviously the masses play a key part in determining the accelerations (so that is still the best answer of the provided 

choices).  That said, while in orbit both objects are already experiencing acceleration towards the center of the orbit 

(assuming circular orbit).  One could imagine scenarios where the additional acceleration caused by the probe 

launch could be parallel, anti-parallel, perpendicular, or at any other direction relative to the already present orbital 

acceleration.  One should sum the accelerations from orbit and launch force 𝐹 to get net acceleration.  It is still 

impossible to determine which has more acceleration but for this more complicated reason.  If you mentioned this 

fact I gave you full credit.    



 

2a) Friction acts to the right.  Without friction, the block’s velocity could not be turned to travel in a circular path! 

2b) No work. 

2c) Work is given by 𝑊 = �⃑� ∙ Δ𝑠 where Δ𝑠 is displacement.   

The frictional force causes no displacement of the block relative to the turntable! 

Friction does no work. 

Another way to explain this: 

Friction in this scenario acts in a direction perpendicular to displacement.   

Forces perpendicular to displacement cause no work. 

Another way to explain this:  

The speed of the block doesn’t change.   

If there is no speed change, there is no energy change. 

If there is no energy change, there is no work done. 

Here normal force and weight together cause no work as those forces balance. 

This implies the only remaining force, friction, must also do no work. 

 

2d) The block is not sliding relative to the turntable. 

Therefore we know static friction applies (𝑓 ≤ 𝜇𝑠𝑛). 

Unless we are told the system is on the verge of slipping, it is exceedingly unlikely the block is about to slip. 

In real world scenarios, it is almost certainly 𝑓 < 𝜇𝑠𝑛. 

Usually we use 𝑓 = 𝜇𝑠𝑛 condition to get an idea of where things should slip in the real world…but we rarely meet 

this condition exactly. 

 

2e) None of the other answers applies. 

2f)  Here it makes sense to do an FBD and write a force equation. 

 

If the rotation rate is cut in half, 𝑎𝑐 decreases by factor 4 (not 2). 

We expect four times less friction. 

 

 

 

 

 

2g)  I ask it every year.  I tell you I plan to ask it every year.  It’s probably on your final every year… 

Action: The earth exerts gravitational force downwards on the block. 

Reaction: The block exerts gravitational force upwards on the earth. 

  

𝑛 

𝑓 

𝑚𝑔 

𝑎𝑐 = 𝑟𝜔2 



3) In this problem we are interested in learning about the frictional coefficient.  

It thus makes sense (to me) to choose a coordinate system aligned with 

friction (upper FBD).  The same results can be obtained using the lower FBD 

(obviously your force equations will look different).  Note: I exaggerated the 

angle to make it easier to label. 

 

Upper FBD Σ𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 :    𝑓 + 𝑚𝑔 sin 𝜃 = 𝑚𝑎 cos 𝜃 

Upper FBD Σ𝐹𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 :    𝑛 − 𝑚𝑔 cos 𝜃 = 𝑚𝑎 sin 𝜃            

 

Now isolate 𝑓 & 𝑛 so you can take a ratio. 

𝑓 = 𝑚𝑎 cos 𝜃 − 𝑚𝑔 sin 𝜃 

𝑛 = 𝑚𝑎 sin 𝜃 + 𝑚𝑔 cos 𝜃 

 

Since we are looking for minimum coefficient of friction we may use the “on 

the verge of slipping” condition. 

𝜇𝑠𝑛

𝑛
=

𝑚𝑎 cos 𝜃 − 𝑚𝑔 sin 𝜃

𝑚𝑎 sin 𝜃 + 𝑚𝑔 cos 𝜃
 

 

Notice 𝑛 cancels on the left side while 𝑚 cancels on the right side. 

𝝁𝒔 =
𝒂 𝐜𝐨𝐬 𝜽 − 𝒈 𝐬𝐢𝐧 𝜽

𝒂 𝐬𝐢𝐧 𝜽 + 𝒈 𝐜𝐨𝐬 𝜽
 

 

This answer is acceptable.  However, we often divide every term by 𝑔 cos 𝜃. 

This gives a slightly prettier result 

𝝁𝒔 =

𝒂
𝒈

− 𝐭𝐚𝐧 𝜽

𝒂
𝒈

𝐭𝐚𝐧 𝜽 + 𝟏
 

Notice both results reduce to the result of workbook problem 6.39 when 𝜃 = 0° as we expect it should! 

 

Notice the 1st method of writing the equation produces a non-infinite result when 𝜃 = 90°.   

Notice the 2nd method of writing the equation initially appears to produce an infinite result when 𝜃 = 90°. 

However, notice you could use could use l’Hôpital’s rule and the two forms do produce the same limit as 𝜃 = 90°. 

 

 

WAIT A MINUTE!  Did you notice the result for 𝜃 = 90° is 𝜇𝑠 = −
𝑎

𝑔
?   

Does this makes sense? 

 

Yes. 

 

Think: if 𝜃 = 90° the situation would look a bit like the figure shown at right.   

Of course this problem makes no sense in the 𝜃 = 90° limit! 

How could it possibly slide up and over a vertical wall when friction is down the 

plane!  

𝑛 

𝑓 

𝑚𝑔 

𝑎 

𝑛 

𝑓 

𝑚𝑔 

𝑎 

𝑛 sin 𝜃 

𝑛
co

s
𝜃
 

𝑓 cos 𝜃 

𝑓 sin 𝜃 

𝜃 ≈ 90°  



Most common mistakes on problem 4: 

 Saying object 2 has 27.5% less mass implies 𝑚2 = 0.725𝑚 
 When using the system FBD use Σ𝐹 = 𝑚𝑡𝑜𝑡𝑎𝑙𝑎 = (𝑚1 + 𝑚2)𝑎 = 1.725𝑚𝑎 

 

4a) I think a system FBD will help here. 

First I figure out the second mass so I don’t screw that up. 

𝑚2 = 27.5% 𝑙𝑒𝑠𝑠 than 𝑚 = (72.5%)𝑚 = 0.725𝑚 

Ignore normal force between the blocks as it is internal to the 𝑚1 & 𝑚2 system. 

Since the upward tension is larger than the downward weight, objects must accelerate upwards. 

 

 

4b) Using the same system FBD one finds force equation 

𝑇 − 𝑤 = 𝑚𝑡𝑜𝑡𝑎𝑙𝑎 

2𝑚𝑔 − 1.725𝑚𝑔 = (1.725𝑚)𝑎 

𝒂 = 𝟎. 𝟏𝟓𝟗𝟒𝒈 

 

4c) Do an FBD on either of the blocks (not a system FBD).  

The upper block has a slightly easier FBD because tension is not directly applied to it. 

 Right produces force equation 

𝑛12 − 𝑤𝑡𝑜𝑝 = 𝑚𝑡𝑜𝑝𝑎 

𝑛12 = 𝑤𝑡𝑜𝑝 + 𝑚𝑡𝑜𝑝𝑎 

𝑛12 = 0.725𝑚𝑔 + (0.725𝑚)(0.15942𝑔) 

Here I used the unrounded result for 𝑎 to avoid intermediate rounding errors. 

𝑛12 = 0.841𝑚𝑔 

 

  

𝑇 = 2𝑚𝑔 

𝑤 = 1.725𝑚𝑔 

𝑎 

𝑛12 

𝑤𝑡𝑜𝑝 = 0.725𝑚𝑔 

𝑎 = 0.15942𝑔 

Using unrounded # 



𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

𝜃 = 180° 

5a) Use energy to compare Stage 2 to Stage 3. 

As the block slides across the level surface it experience work done by friction. 

In this simple case, I hope you can see 𝑛 = 𝑚𝑔 and 𝑓 = 𝜇𝑘𝑛 = 𝜇𝑘𝑚𝑔. 

Since the object moves in a straight line without reversing direction we know 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 = 2𝑑 + 𝑑 = 3𝑑 

 

Work done by friction is 

𝑊𝑓 = 𝑓(𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) cos 𝜃 

𝑊𝑓 = (𝜇𝑘𝑚𝑔)(3𝑑) cos(180°) 

𝑊𝑓 = −3𝜇𝑘𝑚𝑔𝑑 

 

Since the block is sliding horizontally, there is no CHANGE to gravitational potential energy. 

Said another way, if the block isn’t going up or down we can ignore 𝑈𝐺𝑖  & 𝑈𝐺𝑓. 

Said yet another way, if we set our reference level at the bottom of the swing, 𝑈𝐺𝑖 =  𝑈𝐺𝑓 = 0. 

 

The energy equation becomes 

𝑈𝑆𝑖 + 𝐾𝑖 + 𝑊𝑓 = 𝑈𝑆𝑓 + 𝐾𝑓 

Initially the spring is unstretched (also uncompressed).  This tells us 𝑈𝑆𝑖 = 0. 

We are told the max compression occurs when 𝑥 = 𝑑.  At max compression 𝑣𝑓 = 0 which implies 𝐾𝑓 = 0. 

0 +
1

2
𝑚𝑣2 − 3𝜇𝑘𝑚𝑔𝑑 =

1

2
𝑘𝑑2 

𝒌 =
𝒎𝒗𝟐 − 𝟔𝝁𝒌𝒎𝒈𝒅

𝒅𝟐
 

5b) Use energy to compare Stage 1 to Stage 2 (Just before the cut). 

As shown in the workbook and in lecture (or figure at bottom of page) one finds initial height 

ℎ = 𝐿(1 − cos 𝜃) 

This assume the bottom of the swing is our reference level 𝑦 = 0. 

No spring potential energy to worry about in this part. 

Tension is perpendicular to displacement.  Therefore tension does zero work. 

Assuming drag is negligible as well.  Therefore assume no work. 

Using the energy equation one finds 

𝑈𝐺𝑖 + 𝐾𝑖 + 𝑊 = 𝑈𝐺𝑓 + 𝐾𝑓 

𝑚𝑔𝐿(1 − cos 𝜃) + 0 + 0 = 0 +
1

2
𝑚𝑣2 

𝑳 =
𝒗𝟐

𝟐𝒈(𝟏 − 𝐜𝐨𝐬 𝜽)
 

 

 

5c) Consider an FBD at the bottom of the swing (the question asked about a force)! 

𝑇 − 𝑚𝑔 = 𝑚𝑎𝑐 = 𝑚
𝑣2

𝐿
= 𝑚

𝑣2

(
𝑣2

2𝑔(1 − cos 𝜃)
)

= 𝑚(2𝑔(1 − cos 𝜃)) 

𝑻 = 𝒎𝒈(𝟑 − 𝟐 𝐜𝐨𝐬 𝜽) 

  

2𝑑 

𝑑 

𝑣 

Stage 2 

Stage 3  

2𝑑 

𝜃 

𝑣 

Stage 2: Just before cut 

𝜃 
𝐿 

𝐿 = 𝐿 cos 𝜃 + ℎ 

 

ℎ = 𝐿(1 − cos 𝜃) 

 

ℎ
 

𝐿
co

s
𝜃

 

𝑇 

𝑚𝑔 

𝑎𝑐 =
𝑣2

𝐿
 



6a) Equilibrium positions are occur wherever net force is zero. 

Since our problem deals with a single conservative force, we should 

look for positions where this force is zero. 

Hopefully you remember 𝐹𝑥 = −
𝑑𝑢

𝑑𝑥
= −(slope of 𝑈 vs. 𝑥) 

 

Stable equilibrium implies a concave up 𝑈 vs. 𝑥 plot. 

Unstable equilibrium implies a concave down 𝑈 vs. 𝑥 plot. 

Neutral equilibrium implies a flat 𝑈 vs. 𝑥 plot. 

 

𝒙 (𝛍𝐦) Stable/unstable/neutral 

-2.5 unstable 

0.5 stable 

 

6b) Hopefully you remember 𝐹𝑥 = −
𝑑𝑢

𝑑𝑥
= −(slope of 𝑈 vs. 𝑥) 

Notice the slope is negative at 𝑥 = −1.5 μm. 

This implies 𝐹𝑥 > 0. 

 

6c) We want the particle to travel from 𝑥𝑖 = −4.0 μm to the origin. 

Notice the particle must first get over the potential energy max at −2.5 μm. 

Minimum initial speed is found if 𝑣𝑓 = 0 when 𝑥𝑓 = −2.5 μm. 

The force is conservative: use either 𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓   or   Δ𝐾 = −Δ𝑈. 

Δ𝐾 = −Δ𝑈 

1

2
𝑚𝑣𝑓

2 −
1

2
𝑚𝑣𝑖

2 = −(𝑈𝑓 − 𝑈𝑖) 

0 −
1

2
𝑚𝑣𝑖 min

2 = −(−75 meV − (−175 meV)) 

The numbers are read off the vertical coordinate of the plot. 

Also, cancel one minus sign out front and do the subtraction. 

𝑣𝑖 min = √
2

𝑚
(100 meV) 

WATCH OUT!  Convert 100 meV  →  1.602 × 10−20 J before computing! 

If you forget the conversion the speed is not given in units of 
m

s
!!! 

𝒗𝒊 𝐦𝐢𝐧 = 𝟐𝟕𝟔
𝐦

𝐬
= 𝟐. 𝟕𝟔 × 𝟏𝟎𝟐

𝐦

𝐬
 

  

-200

-100

0

100

200

-4 -2 0 2 4

U (meV)

x (mm)

-200

-100

0

100

200

-4 -2 0 2 4

U (meV)

x (mm)

𝒙𝒊

Want to reach

𝒙 = 𝟎

Trouble spot

𝒙𝒇 = −𝟐. 𝟓 𝛍𝐦



7a) We are told to assume the following force equation is valid 

𝐹𝑥 ≈ −
2𝑘𝑐𝑥

√𝑥2 + 𝑐2
 

To determine potential energy use 

Δ𝑈 = − ∫ 𝐹𝑥 𝑑𝑥
𝑓

𝑖

 

𝑈𝑓 − 𝑈𝑥=0 = − ∫ (−
2𝑘𝑐𝑥

√𝑥2 + 𝑐2
)  𝑑𝑥

𝑥𝑓

0

 

Note: it is technically bad form to use 𝑥 in the integrand and the limits. 

I will use 𝑥𝑓 as the upper limit.   

After integration is complete we can then shift 𝑥𝑓 → 𝑥 to reduce subscript clutter. 

𝑈𝑓 − 𝑈𝑥=0 = 2𝑘𝑐 ∫
𝑥

√𝑥2 + 𝑐2
 𝑑𝑥

𝑥𝑓

0

 

An integral in the table reads 

∫
𝑥 𝑑𝑥

(𝑥2 + 𝑎2)1/2
= (𝑥2 + 𝑎2)1/2 

This matched our integral if we identify 𝑎 = 𝑐. 

𝑈𝑓 − 𝑈𝑥=0 = 2𝑘𝑐 (
1

1
𝑥2 + 𝑐2  )

1/2

|
0

𝑥𝑓

 

𝑈𝑓 − 𝑈𝑥=0 = 2𝑘𝑐 [(𝑥𝑓
2 + 𝑐2)

1/2
− (02 + 𝑐2)1/2] 

Notice the zero limit does NOT drop out!!!!  At this point I will change 𝑥𝑓 → 𝑥 to reduce subscript clutter. 

𝑈𝑓 − 𝑈𝑥=0 = 2𝑘𝑐[(𝑥2 + 𝑐2)1/2 − 𝑐] 

𝑈𝑓 − 𝑈𝑥=0 = 2𝑘𝑐(𝑥2 + 𝑐2)1/2 − 2𝑘𝑐2 

Note we are asked to find 𝑈(𝑥).  This is essentially the same thing as solving for 𝑈𝑓. 

𝑈(𝑥) = 𝑈𝑓 = 𝑈𝑥=0 + 2𝑘𝑐(𝑥2 + 𝑐2)1/2 − 2𝑘𝑐2 

Here one has to actually think. 

When 𝑥 = 0 there are two springs of constant 𝑘 stretched distanced 𝑐. 

𝑈𝑖 = 2 (
1

2
𝑘𝑐2) = 𝑘𝑐2 

Plugging in and simplifying gives 

𝑼(𝒙) = 𝟐𝒌𝒄(𝒙𝟐 + 𝒄𝟐)𝟏/𝟐 − 𝒌𝒄𝟐 

CHECKS!  If you plug in 𝑥 = 0 notice we get back 𝑈𝑖 = 𝑘𝑐2.  Units check.  As 𝑥 increases 𝑈 increases. 

 

7b) If the two springs are stretched at equilibrium, there is non-zero (POSITIVE) energy at equilibrium. 

 

Extra Credit: 

Consider the figure at right. 

Notice 

cos 𝜃 =
𝑥

√𝑥2 + 𝑐2
 

Surprisingly, one finds 

�⃑�𝑁𝐸𝑇 = −2𝑘𝑥𝑖̂ 

𝑈(𝑥) = 𝑈0 − ∫ 𝐹𝑥 𝑑𝑥
𝑓

0

= 𝑘𝑐2 + 𝑘𝑥2 

  

𝑥 

𝑐 

𝐹1 = 𝑘ඥ𝑥2 + 𝑐2 

𝐹2 

𝐹𝑁𝐸𝑇 = 2𝐹1𝑥 𝜃 

�⃑�𝑁𝐸𝑇 = −2 ቀ𝑘ඥ𝑥2 + 𝑐2ቁ cos 𝜃 𝑖 ̂

 



8) If looking for the minimum radius of curvature, it is ok to assume the car is on the verge of slipping towards the 

outside of the curve.  This implies friction is directed down the plane.  Two styles of FBDs are shown below. 

Angle is exaggerated to simplify labeling. 

 

  

Style 1 Style 2 

Σ𝐹⊥:     𝑛 − 𝑚𝑔 cos 𝜃 = 𝑚𝑎𝑐 sin 𝜃 Σ𝐹𝑐:     𝑛 sin 𝜃 + 𝑓 cos 𝜃 = 𝑚𝑎𝑐 

Σ𝐹∥:     𝑓 + 𝑚𝑔 sin 𝜃 = 𝑚𝑎𝑐 cos 𝜃 Σ𝐹𝑧:     𝑛 cos 𝜃 − 𝑓 sin 𝜃 = 𝑚𝑔 
 

Since we are trying to determine 𝑟 (which appears in 𝑎𝑐), I’d probably use Style 2 (but either style should work). 

Since we can assume the car is on the verge of slipping (because looking for minimum radius), we can use 𝑓 = 𝜇𝑠𝑛. 

Remember the point where the tires contact the road is not moving relative to the road.  Use 𝜇𝑠 not 𝜇𝑘! 

 

Taking a ratio of the force equations for Style 2 gives 

𝑛 sin 𝜃 + 𝜇𝑠𝑛 cos 𝜃

𝑛 cos 𝜃 − 𝜇𝑠𝑛 sin 𝜃
=

𝑚𝑎𝑐

𝑚𝑔
 

sin 𝜃 + 𝜇𝑠 cos 𝜃

cos 𝜃 − 𝜇𝑠 sin 𝜃
=

𝑣2

𝑟𝑔
 

𝑟 =
𝑣2

𝑔
∙

cos 𝜃 − 𝜇𝑠 sin 𝜃

sin 𝜃 + 𝜇𝑠 cos 𝜃
 

Divide each term in the fraction by cos 𝜃 to make it look prettier. 

𝑟 =
𝑣2

𝑔
∙

1 − 𝜇𝑠 tan 𝜃

tan 𝜃 + 𝜇𝑠

 

𝑟 =
ቀ22.2

m
s

ቁ
2

9.8
m
s2

∙
1 − (0.888) tan(12.75°)

tan(12.75°) + 0.888
 

𝒓 = 𝟑𝟔. 𝟏 m 

 

Extra Credit: If the radius of curvature in real life is 𝑟𝑎𝑐𝑡𝑢𝑎𝑙 = 77.7 m, the car is not on the verge of slipping. 

I would use the Σ𝐹∥ equation from Style 1 to find: 

𝑓 = 𝑚𝑎𝑐 cos 𝜃 − 𝑚𝑔 sin 𝜃 = 4.02 kN 

 

 

 

𝑚𝑔 sin 𝜃 

𝑛 

𝜃 
𝑚𝑔 cos 𝜃 

⊥ 

∥ 

𝑎𝑐 

𝑓 

𝜃 

𝑎𝑐 cos 𝜃 
𝑎𝑐 sin 𝜃 𝜃 

𝑧 

𝑐 

𝑎𝑐 

𝑓 

𝜃 

𝑛 cos 𝜃 

𝑓 cos 𝜃 

𝑛 sin 𝜃 

𝑓 sin 𝜃 

𝑚𝑔 

Style 1 Style 2 


