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Distribution on this page.  Solution begins on the next page.   

 

Note: one very unusual aspect of this exam is that I ended up having to cut the angular momentum problem due to 

time constraints. In general I try to have a problem from every chapter.  Gee…I wonder if an angular momentum 

problem is on the Spring 2023 Final??? 
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1a) & 1b) & 1c) I pretty much ask some variation of this every year. 

I would actually do part 1c first, then 1a, and finally 1b. 

 

1c) When two objects collide the forces they exert on each other have equal magnitude in opposite directions. 

�⃑�1𝑜𝑛2 = −�⃑�2𝑜𝑛1 

 

1a) Typically other forces are negligible during collisions.  In essence, we typically assume the force exerted by one 

object on the other is approximately equal to the net force on the other object.  Newton’s 2nd law for object 2 gives 

�⃑�𝑁𝐸𝑇𝑜𝑛2 = 𝑚2�⃑�2 

�⃑�1𝑜𝑛2 ≈ 𝑚2�⃑�2 

�⃑�2 ≈
�⃑�1𝑜𝑛2

𝑚2

 

Similarly, Newton’s 2nd law for object 1 gives 

�⃑�1 ≈
�⃑�2𝑜𝑛1

𝑚1

 

If net force magnitude is the same on each object, the smaller mass has more acceleration (magnitude). 

 

1b) Finally, recall that momentum relates to force using  

�⃑�𝑁𝐸𝑇𝑜𝑛2 =
𝑑

𝑑𝑡
𝑝2 ≈

Δ𝑝2

Δ𝑡
 

�⃑�1𝑜𝑛2 ≈
Δ𝑝2

Δ𝑡
 

Δ𝑝2 ≈ �⃑�1𝑜𝑛2 Δ𝑡 

Here Δ𝑡 is the collision time interval.  Similarly 

Δ𝑝1 ≈ �⃑�2𝑜𝑛1 Δ𝑡 

If the forces have equal magnitude we expect equal magnitude change in momentum as well! 

 

1d) We are told the collision is perfectly inelastic. 

This implies the objects stick together and move in unison after the collision. 

 

Momentum in the 𝑥-direction is conserved. 

Initially the basketball-sphere system has positive 𝑥-direction momentum. 

The system continues to have positive 𝑥-direction momentum after the collision. 

 

Momentum in the 𝑦-direction is also conserved. 

Initially the basketball-sphere system has positive 𝑦-direction momentum. 

The system continues to have positive 𝑦-direction momentum after the collision. 

 

The combined basketball-sphere object moves somewhere into the 1st quadrant. 

  

𝑥 

𝑦 

Before 

𝑥 

𝑦 

After 



2a) Linear mass density increases with horizontal position according to the density equation 

𝜆 = 𝑐𝑥2 

We expect the right end of the rod to have more mass than the left end. 

The center of mass position should be closer to the right end of the rod. 

 

2b) The moment of inertia is found using 

𝐼𝑦𝑦 = 𝐼𝑎𝑏𝑜𝑢𝑡 𝑦−𝑎𝑥𝑖𝑠 = ∫(𝑟𝑎𝑑𝑖𝑢𝑠𝑓𝑟𝑜𝑚 𝑦−𝑎𝑥𝑖𝑠)
2

 𝑑𝑚 

𝐼 = ∫ 𝑥2 (𝜆 𝑑𝑥) 

𝐼 = ∫ 𝑥2 (𝑐𝑥2 𝑑𝑥)
𝐿

0

 

𝐼 =
𝑐𝐿5

5
 

𝒄 =
𝟓𝑰

𝑳𝟓
 

 

3a) & 3b) The system can be visualized as a solid square plate minus a solid circular plate. 

 

 

 

 

 

 

 

 

 

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑚1 − 𝑚2                  𝑥𝐶𝑀 =
𝑥1𝑚1 − 𝑥2𝑚2

𝑚1 − 𝑚2

 

In these equations 

 𝑥1 =
𝑠

2
 is the horizontal coordinate of the center of mass of object 1 (square plate) 

 𝑚1 = 𝜎𝐴1 = 𝜎𝑠2 is the mass of object 1 (square plate) assuming uniform plate density 𝜎 in units of 
kg

m2 

 𝑥2 =
3

4
𝑠 is the horizontal coordinate of the center of mass of object 2 (circular plate) 

 𝑚1 = 𝜎𝐴2 = 𝜎
𝜋𝑠2

16
 is the mass of object 2 (circular plate) assuming uniform plate density 𝜎 in units of 

kg

m2 

 If you care, the mass per unit area (𝜎) relates to standard 3D density (𝜌) using 

𝜎 = 𝜌 × (𝑝𝑙𝑎𝑡𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) 

 

Total mass of the plate is 

𝑀𝑡𝑜𝑡𝑎𝑙 = 𝑚1 − 𝑚2 = 𝜎𝑠2 − 𝜎
𝜋𝑠2

16
= 0.8037𝜎𝑠2 

 

Notice every term in the center of mass equation has 𝜎…mass density will drop out in that result. 

𝑥𝐶𝑀 =
𝑥1𝑚1 − 𝑥2𝑚2

𝑚1 − 𝑚2

=
(

𝑠
2

) (𝜎𝑠2) − (
3
4

𝑠) (𝜎
𝜋𝑠2

16
)

𝜎𝑠2 − 𝜎
𝜋𝑠2

16

= 0.439𝑠 

  

𝑥 

𝑦 

𝑥 
𝑚𝑠𝑙𝑖𝑐𝑒 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑙𝑖𝑐𝑒 

𝑑𝑚 = 𝜆 𝑑𝑥 

 𝑑𝑥 

𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 



4a) & 4b) I chose to draw my FBD like the one shown at right. 

Currently my style is to think as little as possible about the reaction forces at the pivot. 

I blindly choose them to be 𝑅𝑥 to the right and 𝑅𝑦 upwards. 

If I get a negative result, the true direction is opposite the direction drawn. 

 

 

Sum of torques about the pivot (using CCW as positive direction) gives 

𝑟𝑇𝑇 sin 𝜃𝑇 − 𝑟𝑚𝑔𝑚𝑔 sin 𝜃𝑚𝑔 = 0 

Recall, this is a static equilibrium problem…𝛼 = 0. 

(
4

5
𝐿) 𝑇 sin 𝜃 −

𝐿

2
𝑚𝑔 sin(90° − 𝜃) = 0 

Solving for 𝑚: 

𝑚 =
8𝑇

5𝑔
tan 𝜃 

𝒎 ≈ 𝟑. 𝟓𝟖𝟑
𝑻

𝒈
 

 

Sum of forces gives 

Horizontal Force Equation Vertical Force Equation 

𝑅𝑥 = −𝑇 

𝑅𝑦 = 𝑚𝑔 

𝑅𝑦 ≈ (3.583
𝑇

𝑔
) 𝑔 

𝑅𝑦 ≈ 3.583𝑇 

 

Putting the results together in Cartesian form gives 

�⃑⃑� = (−1.00𝑖̂ + 3.583𝑗̂)̂𝑇 

The magnitude of this force vector is 

𝑹 ≈ 𝟑. 𝟕𝟐𝑻 

  

𝑅𝑥 

𝑅𝑦 

𝑇 
𝑚𝑔 

𝜃 

𝑟𝑇 =
4

5
𝐿 

𝑟𝑚𝑔 =
1

2
𝐿 



5a) WATCH OUT when converting to RPM.   

Many times students forget to put parentheses around 2𝜋 in the denominator. 

0.925
rad

s
×

1 rev

2𝜋 rad
×

60 s

1 min
≈ 𝟖. 𝟖𝟑 𝐑𝐏𝐌 

As a useful check, I keep in mind this conversion should change the number by approximately a factor of 10… 

Strictly speaking the initial rotation VECTOR is shown as �⃑⃑⃑�𝑖 = 𝟖. 𝟖𝟑 𝐑𝐏𝐌(−𝑗̂). 

Assuming you did the rest of the problem correctly I was fine with it if you flipped all negative signs… 

 

5b) Several good ways to go about this.  Since we have constant angular acceleration: 

𝜔𝑓
2 = 𝜔𝑖

2 + 2𝛼Δ𝜃 

Here Δ�⃑� = 0.100 rev(−𝑗̂) = 0.6283 rad(−𝑗̂) while 𝜔𝑓 = 0 since the disk comes to rest. 

0 = 𝜔𝑖
2 + 2𝛼Δ𝜃 

𝛼 = −
𝜔𝑖

2

2Δ𝜃
 

𝜶 ≈ ±𝟎. 𝟔𝟖𝟎𝟗 
𝐫𝐚𝐝

𝐬𝟐
 

If you assumed the original rotation direction was positive you should have the minus sign on this result. 

 

5c) Because angular acceleration is constant we can use  

𝜔𝑓 = 𝜔𝑖 + 𝛼𝑡 

𝑡 =
𝜔𝑓 − 𝜔𝑖

𝛼
 

𝒕 ≈ 𝟏. 𝟑𝟓𝟗 s 

 

5d) INITIAL total acceleration (magnitude) is given by  

𝑎𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑖𝑡 = √𝑎𝑡𝑎𝑛 𝑖𝑛𝑖𝑡
2 + 𝑎𝑐 𝑖𝑛𝑖𝑡

2   

𝑎𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑖𝑡 = √(𝑟𝛼)2 + (𝑟𝜔𝑖
2)2 

𝑎𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑖𝑡 = 𝑟√𝛼2 + 𝜔𝑖
4 

In this equation, 𝑟 means distance from axis to the point of interest where one wishes to determine 𝑎𝑡𝑜𝑡𝑎𝑙 . 

Since our point of interest is on the edge of the disk, this distance is the full radius of the disk (0.375 m). 

Finally, notice one must use units of radians for angular quantities 𝛼 & 𝜔𝑖 for the units to work out properly! 

𝑎𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑖𝑡 ≈ (0.375 m)√(−0.6809 
rad

s2
)

2

+ (0.925
rad

s
)

4

 

𝒂𝒕𝒐𝒕𝒂𝒍 𝒊𝒏𝒊𝒕 ≈ 𝟎. 𝟒𝟏𝟎
𝐦

𝐬𝟐
 

5e) WATCH OUT! 

Notice the disk is being rotated about an axis in the plane of the disk. 

Notice 𝐼 =
1

4
𝑚𝑟2  instead of the usual 𝐼 =

1

2
𝑚𝑟2 used so often in rolling motion problems! 

𝑅𝐾𝐸𝑖 =
1

2
𝐼𝜔𝑖

2 =
1

2
(

1

4
𝑚𝑟2) 𝜔𝑖

2 ≈
1

8
(2.00 kg)(0.375 m)2 (0.925

rad

s
)

2

= 𝟑𝟎. 𝟏 mJ 

Again, notice one must use units of 
rad

s
 on 𝜔𝑖 for the units to work out properly. 



6a) & 6b) I chose to label my figure as shown at right. 

In my figure, I am assuming 𝑣′𝑠 are speeds with velocity directions indicated by arrows. 

Other reasonable styles are possible and should give the same results as mine shown below. 

 

For every type of collision we typically use conservation of momentum.  We can do this because 

assume collision time is short enough such that external forces are negligible (usually a good 

assumption in the real world). 

 

For elastic collisions we can also assume energy is conserved. 

 

Conservation of Momentum Conservation of Energy 

𝑚𝑣1𝑖 = 𝑚(−4𝑣) + 𝑚2𝑣 
1

2
𝑚𝑣1𝑖

2 =
1

2
𝑚(4𝑣)2 +

1

2
𝑚2𝑣2 

 

For me it seemed easiest to divide all terms in both equations by 𝑚. 

I also cancelled the 
1

2
′𝑠 in the energy equation right away. 

Conservation of Momentum Conservation of Energy 

𝑣1𝑖 = −4𝑣 +
𝑚2

𝑚
𝑣 

𝑣1𝑖 = 𝑣 (
𝑚2

𝑚
− 4) 

𝑣1𝑖
2 = (4𝑣)2 +

𝑚2

𝑚
𝑣2 

 

Now I sub in the equation for 𝑣1𝑖 from conservation of momentum into the energy equation and solve. 

𝑣2 (
𝑚2

𝑚
− 4)

2

= (4𝑣)2 +
𝑚2

𝑚
𝑣2 

Notice 𝑣2 cancels in every term!!!   

(
𝑚2

𝑚
− 4)

2

= 16 +
𝑚2

𝑚
      

(
𝑚2

𝑚
)

2

+ (−8
𝑚2

𝑚
) + 16 = 16 +

𝑚2

𝑚
                              

(
𝑚2

𝑚
)

2

+ (−9
𝑚2

𝑚
) = 0                                 

𝒎𝟐 = 𝟗. 𝟎𝟎𝒎 

Now plug this result back into  

𝑣1𝑖 = 𝑣 (
𝑚2

𝑚
− 4) 

𝑣1𝑖 = 𝑣 (
𝟗𝒎

𝑚
− 4) 

𝒗𝟏𝒊 = 𝟓. 𝟎𝟎𝒗 

  

After 

Before 

𝑚 𝑚2 =? 𝑣1𝑖 =? 

4𝑣 𝑣 



7a) TRUE.  Acceleration is constant when rolling without slipping in a straight line.  

Note: acceleration is not constant if the ramp was a circular arc or if we had a pendulum swinging… 

 

7b) 𝒗 =
𝑹𝝎

𝟑
 

The radius which relates translational and rotational speeds is the radius connected to the ramp/road/string. 

We may use this result for rolling without slipping. 

 

I put part 7c on the next page so I could draw a huge diagram for you to see things better… 

 

  



7c) Rolling motion implies both translation and rotation occur.  Do both forces and torques. 

I’ll choose to do torques about the center of mass (since that technique also works for rolling with slipping). 

On next page I will show the instantaneous pivot method… 

Sum of torques about center of mass Sum of forces down the plane 

Normal force and weight cause no torque since they have lines of 

action through the pivot. 

Σ𝜏𝐶𝑀 = 𝐼𝐶𝑀𝛼 

𝜏𝑓 = 𝐼𝐶𝑀𝛼 

𝑟𝑓𝑓 sin 𝜃𝑓 = 𝐼𝐶𝑀𝛼 

𝑅

3
𝑓 sin 90° = 𝐼𝐶𝑀𝛼 

𝑅𝑓

3
= 𝐼𝐶𝑀𝛼 

This disk rotates about an axis perpendicular to the plane:   

𝐼𝑐𝑚 =
1

2
𝑚𝑅2 

Note: in this problem we were told the extra disks produce negligible 

contribution to the moment of inertia. 

𝑅

3
𝑓 =

1

2
𝑚𝑅2𝛼 

𝑚𝑔 sin 𝜃 − 𝑓 = 𝑚𝑎 

 

𝑓 = 𝑚𝑔 sin 𝜃 − 𝑚𝑎 

 

Since rolling without slipping can use 𝑎 = 𝑟𝛼. 

Use 𝑟 =
𝑅

3
 since that is the radius touching the ramp! 

𝑓 = 𝑚𝑔 sin 𝜃 − 𝑚
𝑅

3
𝛼 

 

Now plug this result for 𝑓 into torque equation… 

𝑅

3
(𝑚𝑔 sin 𝜃 − 𝑚

𝑅

3
𝛼) =

1

2
𝑚𝑅2𝛼 

Group like terms to solve for 𝛼.  A common mistake is to forget to use 𝑎 = 𝑟𝛼.  If you forget this, the final result 

contains a circular reference and is not considered in good form. 

𝑅

3
𝑚𝑔 sin 𝜃 − 𝑚

𝑅2

9
𝛼 =

1

2
𝑚𝑅2𝛼 

𝑅

3
𝑚𝑔 sin 𝜃 =

11

18
𝑚𝑅2𝛼 

𝜶 =
𝟔𝒈 𝐬𝐢𝐧 𝜽

𝟏𝟏𝑹
≈

𝟎. 𝟓𝟒𝟓𝒈 𝐬𝐢𝐧 𝜽

𝑹
 

𝑚𝑔 
𝑟𝑓 =

𝑅

3
 

𝑛 
𝑓 

Assuming CW is 

positive direction 

𝛼 

Assuming down the plane 

is positive direction 
𝑎 

𝑚𝑔 

𝑛 

𝑓 

𝜃 



 

Sum of torques about point of contact (instantaneous pivot) 

Normal force and friction cause no torque since they have lines of action through the pivot. 

 

Σ𝜏𝐶𝑀 = 𝐼𝑖𝑛𝑠𝑡𝛼 

𝜏𝑚𝑔 = (𝐼𝐶𝑀 + 𝑚𝑑2)𝛼 

𝑟𝑚𝑔𝑚𝑔 sin 𝜃𝑚𝑔 = (𝐼𝐶𝑀 + 𝑚 (
𝑅

3
)

2

) 𝛼 

𝑅

3
𝑚𝑔 sin 𝜃 = (

1

2
𝑚𝑅2 + 𝑚 (

𝑅

3
)

2

) 𝛼 

𝑅

3
𝑚𝑔 sin 𝜃 = (

1

2
+

1

9
) 𝑚𝑅2𝛼 

𝑅

3
𝑚𝑔 sin 𝜃 =

11

18
𝑚𝑅2𝛼 

𝜶 =
𝟔𝒈 𝐬𝐢𝐧 𝜽

𝟏𝟏𝑹
≈

𝟎. 𝟓𝟒𝟓𝒈 𝐬𝐢𝐧 𝜽

𝑹
 

  

𝑚𝑔 𝑟𝑚𝑔 =
𝑅

3
 

𝑛 
𝑓 

Assuming CW is 

positive direction 

𝛼 

𝜃𝑚𝑔 = 𝜃 



7d) At this point, you could actually use constant acceleration kinematics since acceleration is actually constant. 

I prefer to show you energy methods since that technique works even when acceleration non-constant. 

I will then check the result using kinematics. 

In this solution I will use 𝑅𝐾𝐸 for rotational kinetic energy and 𝑇𝐾𝐸 for translational kinetic energy. 

𝑅𝐾𝐸𝑖 + 𝑇𝐾𝐸𝑖 + 𝑈𝑔𝑟𝑎𝑣 𝑖 + 𝑊 𝑒𝑥𝑡
𝑛𝑜𝑛−𝑐𝑜𝑛

= 𝑅𝐾𝐸𝑓 + 𝑇𝐾𝐸𝑓 + 𝑈𝑔𝑟𝑎𝑣 𝑓 

When rolling without slipping, friction does no work!  Recall, the point of contact with the road does NOT slip 

relative to the road.This frictional force is present but there is no displacement relative to the road. 

Normal force is perpendicular to displacement, no work from that force either. 

Starting from rest.  Letting lowest point (final position) in the problem have zero height. 

0 + 0 + 𝑚𝑔𝑥 sin 𝜃 + 0 =
1

2
𝐼𝜔2 +

1

2
𝑚𝑣2 + 0 

2𝑚𝑔𝑥 sin 𝜃 = 𝐼𝜔2 + 𝑚𝑣2 

Divide all by 𝑚 since it tends to simplify algebra later on… 

2𝑔𝑥 sin 𝜃 =
𝐼

𝑚
𝜔2 + 𝑣2 

 

Remember, rewrite 𝜔 using 𝑣 =
𝑅

3
𝜔 →    𝜔 =

3𝑣

𝑅
. 

It is bad form to have our final answer for 𝑣 in terms of omega (this is a circular reference). 

2𝑔𝑥 sin 𝜃 =
𝐼

𝑚
(

3𝑣

𝑅
)

2

+ 𝑣2 

2𝑔𝑥 sin 𝜃 = 𝑣2 (
9𝐼

𝑚𝑅2
+ 1) 

2𝑔𝑥 sin 𝜃 = 𝑣2 (
9 (

1
2

𝑚𝑅2)

𝑚𝑅2
+ 1) 

2𝑔𝑥 sin 𝜃 = 𝑣2 (
11

2
) 

𝒗 = √
𝟒

𝟏𝟏
𝒈𝒙 𝐬𝐢𝐧 𝜽 ≈ 𝟎. 𝟔𝟎𝟑√𝒈𝒙 𝐬𝐢𝐧 𝜽 

Kinematics check on the next page… 

  

𝜃 

𝑥 
𝜔 

ℎ𝑖 = 𝑥 sin 𝜃 

𝑣 



7d) Continued.  Check previous result using kinematics: 

𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑎Δ𝑥 

𝑣2 = 0 + 2 (
𝑅

3
𝛼) 𝑥 

𝑣 = √
2𝑅𝑥𝛼

3
 

Plug in the result for 𝛼 from problem 7c… 

𝑣 =
√2𝑅𝑥 (

6𝑔 sin 𝜃
11𝑅

)

3
 

𝑣 = √
𝟒

𝟏𝟏
𝒈𝒙 𝐬𝐢𝐧 𝜽 

Notice we get the same result as we did using energy methods. 

This is method is probably easier for this particular problem. 

That said, sometimes you really want to know this technique…sometimes acceleration isn’t constant. 

REMEMBER THIS: you shouldn’t use constant acceleration kinematics for a pendulum swinging… 

 

 

 

 

 

 

  



EXTRA CREDIT: 

 

 

 

 

 

 

 

 

 

 

 𝑥1 =
𝑠

2
 is the horizontal coordinate of the center of mass of object 1 (square plate) 

 𝑚1 = 𝜎𝐴1 = 𝜎𝑠2 is the mass of object 1 (square plate) assuming uniform plate density 𝜎 in units of 
kg

m2 

 𝑥2 =
3

4
𝑠 is the horizontal coordinate of the center of mass of object 2 (circular plate) 

 𝑚1 = 𝜎𝐴2 = 𝜎
𝜋𝑠2

16
 is the mass of object 2 (circular plate) assuming uniform plate density 𝜎 in units of 

kg

m2 

 If you care, the mass per unit area (𝜎) relates to standard 3D density (𝜌) using 

𝜎 = 𝜌 × (𝑝𝑙𝑎𝑡𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) 

 

𝐼𝑦𝑦              =           𝐼𝑠𝑞𝑢𝑎𝑟𝑒               −                 𝐼𝑑𝑖𝑠𝑘  

 

You should use the parallel axis theorem for the thin plate using 𝑎 = 𝑏 = 𝑠 and 𝑑 =
𝑠

2
. 

 

You could use the parallel axis theorem on the disk (axis in-plane) using 𝑑 =
3

4
𝑠. 

  𝐼𝑦𝑦              =  (
1

12
𝑚1𝑠2 + 𝑚1 (

𝑠

2
)

2

)   −                 (
1

4
𝑚2𝑟2 + 𝑚2𝑑2) 

        𝐼𝑦𝑦              =           (
1

3
𝑚1𝑠2)                 −                 𝑚2 (

1

4
(

𝑠

4
)

2

+ (
3

4
𝑠)

2

) 

                  𝐼𝑦𝑦              =           
1

3
(𝜎𝑠2)𝑠2               −            (𝜎

𝜋𝑠2

16
) (

1

64
𝑠2 +

9

16
𝑠2)          

   𝐼𝑦𝑦             =           0.3333𝜎𝑠4             −            0.11351𝜎𝑠4                 

𝑰𝒚𝒚 ≈ 𝟎. 𝟐𝟐𝟎𝝈𝒔𝟒 

𝐼 𝑡ℎ𝑖𝑛
𝑝𝑙𝑎𝑡𝑒

=
1

12
𝑚𝑏2 

𝑏 

𝑎 

𝐼𝑑𝑖𝑠𝑘 =
1

4
𝑚𝑅2 

Remember to also account for the parallel 

axis theorem on both of these shapes!!! 

𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 


