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Distribution on this page.  Solution begins on the next page.   
 
Note: one very unusual aspect of this exam is that I ended up having to cut the angular momentum problem due to 
time constraints. In general I try to have a problem from every chapter.  Gee…I wonder if an angular momentum 
problem is on the Spring 2023 Final??? 
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Test 3 graded out of 40 (even though 43 possible)
Scores over 100% not possible



1a) & 1b) & 1c) I pretty much ask some variation of this every year. 
I would actually do part 1c first, then 1a, and finally 1b. 
 
1c) When two objects collide the forces they exert on each other have equal magnitude in opposite directions. 

𝐹⃑𝐹1𝑜𝑜𝑜𝑜2 = −𝐹⃑𝐹2𝑜𝑜𝑜𝑜1 
 
1a) Typically other forces are negligible during collisions.  In essence, we typically assume the force exerted by one 
object on the other is approximately equal to the net force on the other object.  Newton’s 2nd law for object 2 gives 

𝐹⃑𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 = 𝑚𝑚2𝑎⃑𝑎2 
𝐹⃑𝐹1𝑜𝑜𝑜𝑜2 ≈ 𝑚𝑚2𝑎⃑𝑎2 

𝑎⃑𝑎2 ≈
𝐹⃑𝐹1𝑜𝑜𝑜𝑜2
𝑚𝑚2

 

Similarly, Newton’s 2nd law for object 1 gives 

𝑎⃑𝑎1 ≈
𝐹⃑𝐹2𝑜𝑜𝑜𝑜1
𝑚𝑚1

 

If net force magnitude is the same on each object, the smaller mass has more acceleration (magnitude). 
 
1b) Finally, recall that momentum relates to force using  

𝐹⃑𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 =
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝2 ≈

Δ𝑝𝑝2
Δ𝑡𝑡

 

𝐹⃑𝐹1𝑜𝑜𝑜𝑜2 ≈
Δ𝑝𝑝2
Δ𝑡𝑡

 

Δ𝑝𝑝2 ≈ 𝐹⃑𝐹1𝑜𝑜𝑜𝑜2 Δ𝑡𝑡 
Here Δ𝑡𝑡 is the collision time interval.  Similarly 

Δ𝑝𝑝1 ≈ 𝐹⃑𝐹2𝑜𝑜𝑜𝑜1 Δ𝑡𝑡 
If the forces have equal magnitude we expect equal magnitude change in momentum as well! 
 
1d) We are told the collision is perfectly inelastic. 
This implies the objects stick together and move in unison after the collision. 
 
Momentum in the 𝑥𝑥-direction is conserved. 
Initially the basketball-sphere system has positive 𝑥𝑥-direction momentum. 
The system continues to have positive 𝑥𝑥-direction momentum after the collision. 
 
Momentum in the 𝑦𝑦-direction is also conserved. 
Initially the basketball-sphere system has positive 𝑦𝑦-direction momentum. 
The system continues to have positive 𝑦𝑦-direction momentum after the collision. 
 
The combined basketball-sphere object moves somewhere into the 1st quadrant. 
  

𝑥𝑥 

𝑦𝑦 

Before 

𝑥𝑥 

𝑦𝑦 

After 



2a) Linear mass density increases with horizontal position according to the density equation 
𝜆𝜆 = 𝑐𝑐𝑥𝑥2 

We expect the right end of the rod to have more mass than the left end. 
The center of mass position should be closer to the right end of the rod. 
 
2b) The moment of inertia is found using 

𝐼𝐼𝑦𝑦𝑦𝑦 = 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ��𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
2 𝑑𝑑𝑑𝑑 

𝐼𝐼 = �𝑥𝑥2 (𝜆𝜆 𝑑𝑑𝑑𝑑) 

𝐼𝐼 = � 𝑥𝑥2 (𝑐𝑐𝑥𝑥2 𝑑𝑑𝑑𝑑)
𝐿𝐿

0
 

𝐼𝐼 =
𝑐𝑐𝐿𝐿5

5
 

𝒄𝒄 =
𝟓𝟓𝟓𝟓
𝑳𝑳𝟓𝟓

 

 
3a) & 3b) The system can be visualized as a solid square plate minus a solid circular plate. 
 
 
 
 
 
 
 
 
 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚1 −𝑚𝑚2                  𝑥𝑥𝐶𝐶𝐶𝐶 =
𝑥𝑥1𝑚𝑚1 − 𝑥𝑥2𝑚𝑚2

𝑚𝑚1 − 𝑚𝑚2
 

In these equations 
• 𝑥𝑥1 = 𝑠𝑠

2
 is the horizontal coordinate of the center of mass of object 1 (square plate) 

• 𝑚𝑚1 = 𝜎𝜎𝐴𝐴1 = 𝜎𝜎𝑠𝑠2 is the mass of object 1 (square plate) assuming uniform plate density 𝜎𝜎 in units of kg
m2 

• 𝑥𝑥2 = 3
4
𝑠𝑠 is the horizontal coordinate of the center of mass of object 2 (circular plate) 

• 𝑚𝑚1 = 𝜎𝜎𝐴𝐴2 = 𝜎𝜎 𝜋𝜋𝑠𝑠2

16
 is the mass of object 2 (circular plate) assuming uniform plate density 𝜎𝜎 in units of kg

m2 

• If you care, the mass per unit area (𝜎𝜎) relates to standard 3D density (𝜌𝜌) using 
𝜎𝜎 = 𝜌𝜌 × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

 
Total mass of the plate is 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚1 − 𝑚𝑚2 = 𝜎𝜎𝑠𝑠2 − 𝜎𝜎
𝜋𝜋𝑠𝑠2

16
= 0.8037𝜎𝜎𝑠𝑠2 

 
Notice every term in the center of mass equation has 𝜎𝜎…mass density will drop out in that result. 

𝑥𝑥𝐶𝐶𝐶𝐶 =
𝑥𝑥1𝑚𝑚1 − 𝑥𝑥2𝑚𝑚2

𝑚𝑚1 − 𝑚𝑚2
=
�𝑠𝑠2� (𝜎𝜎𝑠𝑠2) − �3

4 𝑠𝑠� �𝜎𝜎
𝜋𝜋𝑠𝑠2
16 �

𝜎𝜎𝑠𝑠2 − 𝜎𝜎 𝜋𝜋𝑠𝑠
2

16

= 0.439𝑠𝑠 

  

𝑥𝑥 
𝑦𝑦 

𝑥𝑥 
𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑑𝑑𝑑𝑑 = 𝜆𝜆 𝑑𝑑𝑑𝑑 

 𝑑𝑑𝑑𝑑 

𝑥𝑥 

𝑦𝑦 

𝑥𝑥 

𝑦𝑦 

𝑥𝑥 

𝑦𝑦 



4a) & 4b) I chose to draw my FBD like the one shown at right. 
Currently my style is to think as little as possible about the reaction forces at the pivot. 
I blindly choose them to be 𝑅𝑅𝑥𝑥 to the right and 𝑅𝑅𝑦𝑦 upwards. 
If I get a negative result, the true direction is opposite the direction drawn. 
 
 
Sum of torques about the pivot (using CCW as positive direction) gives 

𝑟𝑟𝑇𝑇𝑇𝑇 sin𝜃𝜃𝑇𝑇 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 sin𝜃𝜃𝑚𝑚𝑚𝑚 = 0 
Recall, this is a static equilibrium problem…𝛼𝛼 = 0. 

�
4
5
𝐿𝐿� 𝑇𝑇 sin𝜃𝜃 −

𝐿𝐿
2
𝑚𝑚𝑚𝑚 sin(90° − 𝜃𝜃) = 0 

Solving for 𝑚𝑚: 

𝑚𝑚 =
8𝑇𝑇
5𝑔𝑔

tan𝜃𝜃 

𝒎𝒎 ≈ 𝟑𝟑.𝟓𝟓𝟖𝟖𝟑𝟑
𝑻𝑻
𝒈𝒈

 

 
Sum of forces gives 

Horizontal Force Equation Vertical Force Equation 

𝑅𝑅𝑥𝑥 = −𝑇𝑇 

𝑅𝑅𝑦𝑦 = 𝑚𝑚𝑚𝑚 

𝑅𝑅𝑦𝑦 ≈ �3.583
𝑇𝑇
𝑔𝑔
�𝑔𝑔 

𝑅𝑅𝑦𝑦 ≈ 3.583𝑇𝑇 
 
Putting the results together in Cartesian form gives 

𝑅𝑅�⃑ = �−1.00𝚤𝚤̂ + 3.583𝑗𝑗𝑗�𝑇𝑇 
The magnitude of this force vector is 

𝑹𝑹 ≈ 𝟑𝟑.𝟕𝟕𝟕𝟕𝑻𝑻 
  

𝑅𝑅𝑥𝑥 

𝑅𝑅𝑦𝑦 

𝑇𝑇 
𝑚𝑚𝑚𝑚 

𝜃𝜃 

𝑟𝑟𝑇𝑇 =
4
5
𝐿𝐿 

𝑟𝑟𝑚𝑚𝑚𝑚 =
1
2
𝐿𝐿 



5a) WATCH OUT when converting to RPM.   
Many times students forget to put parentheses around 2𝜋𝜋 in the denominator. 

0.925
rad

s
×

1 rev
2𝜋𝜋 rad

×
60 s

1 min
≈ 𝟖𝟖.𝟖𝟖𝟖𝟖 𝐑𝐑𝐑𝐑𝐑𝐑 

As a useful check, I keep in mind this conversion should change the number by approximately a factor of 10… 
Strictly speaking the initial rotation VECTOR is shown as 𝜔𝜔��⃑ 𝑖𝑖 = 𝟖𝟖.𝟖𝟖𝟖𝟖 𝐑𝐑𝐑𝐑𝐑𝐑(−𝚥𝚥̂). 

Assuming you did the rest of the problem correctly I was fine with it if you flipped all negative signs… 

 
5b) Several good ways to go about this.  Since we have constant angular acceleration: 

𝜔𝜔𝑓𝑓2 = 𝜔𝜔𝑖𝑖
2 + 2𝛼𝛼Δ𝜃𝜃 

Here Δ𝜃⃑𝜃 = 0.100 rev(−𝚥𝚥̂) = 0.6283 rad(−𝚥𝚥̂) while 𝜔𝜔𝑓𝑓 = 0 since the disk comes to rest. 
0 = 𝜔𝜔𝑖𝑖

2 + 2𝛼𝛼Δ𝜃𝜃 

𝛼𝛼 = −
𝜔𝜔𝑖𝑖
2

2Δ𝜃𝜃
 

𝜶𝜶 ≈ ±𝟎𝟎.𝟔𝟔𝟔𝟔𝟎𝟎𝟗𝟗 
𝐫𝐫𝐫𝐫𝐫𝐫
𝐬𝐬𝟐𝟐

 

If you assumed the original rotation direction was positive you should have the minus sign on this result. 
 
5c) Because angular acceleration is constant we can use  

𝜔𝜔𝑓𝑓 = 𝜔𝜔𝑖𝑖 + 𝛼𝛼𝛼𝛼 

𝑡𝑡 =
𝜔𝜔𝑓𝑓 − 𝜔𝜔𝑖𝑖

𝛼𝛼
 

𝒕𝒕 ≈ 𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑 s 
 
5d) INITIAL total acceleration (magnitude) is given by  

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑎𝑎𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2   

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �(𝑟𝑟𝛼𝛼)2 + (𝑟𝑟𝜔𝜔𝑖𝑖
2)2 

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟�𝛼𝛼2 + 𝜔𝜔𝑖𝑖
4 

In this equation, 𝑟𝑟 means distance from axis to the point of interest where one wishes to determine 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 
Since our point of interest is on the edge of the disk, this distance is the full radius of the disk (0.375 m). 
Finally, notice one must use units of radians for angular quantities 𝛼𝛼 & 𝜔𝜔𝑖𝑖 for the units to work out properly! 

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≈ (0.375 m)��−0.6809 
rad
s2
�
2

+ �0.925
rad

s
�
4

 

𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 ≈ 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒
𝐦𝐦
𝐬𝐬𝟐𝟐

 

5e) WATCH OUT! 
Notice the disk is being rotated about an axis in the plane of the disk. 
Notice 𝐼𝐼 = 1

4
𝑚𝑚𝑟𝑟2  instead of the usual 𝐼𝐼 = 1

2
𝑚𝑚𝑟𝑟2 used so often in rolling motion problems! 

𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖 =
1
2
𝐼𝐼𝜔𝜔𝑖𝑖

2 =
1
2
�

1
4
𝑚𝑚𝑟𝑟2�𝜔𝜔𝑖𝑖

2 ≈
1
8

(2.00 kg)(0.375 m)2 �0.925
rad

s
�
2

= 𝟑𝟑𝟑𝟑.𝟏𝟏 mJ 

Again, notice one must use units of rad
s

 on 𝜔𝜔𝑖𝑖 for the units to work out properly. 



6a) & 6b) I chose to label my figure as shown at right. 
In my figure, I am assuming 𝑣𝑣′𝑠𝑠 are speeds with velocity directions indicated by arrows. 
Other reasonable styles are possible and should give the same results as mine shown below. 
 
For every type of collision we typically use conservation of momentum.  We can do this because 
assume collision time is short enough such that external forces are negligible (usually a good 
assumption in the real world). 
 
For elastic collisions we can also assume energy is conserved. 
 

Conservation of Momentum Conservation of Energy 

𝑚𝑚𝑣𝑣1𝑖𝑖 = 𝑚𝑚(−4𝑣𝑣) + 𝑚𝑚2𝑣𝑣 
1
2
𝑚𝑚𝑣𝑣1𝑖𝑖2 =

1
2
𝑚𝑚(4𝑣𝑣)2 +

1
2
𝑚𝑚2𝑣𝑣2 

 
For me it seemed easiest to divide all terms in both equations by 𝑚𝑚. 
I also cancelled the 1

2
′𝑠𝑠 in the energy equation right away. 

Conservation of Momentum Conservation of Energy 

𝑣𝑣1𝑖𝑖 = −4𝑣𝑣 +
𝑚𝑚2

𝑚𝑚
𝑣𝑣 

𝑣𝑣1𝑖𝑖 = 𝑣𝑣 �
𝑚𝑚2

𝑚𝑚
− 4� 

𝑣𝑣1𝑖𝑖2 = (4𝑣𝑣)2 +
𝑚𝑚2

𝑚𝑚
𝑣𝑣2 

 
Now I sub in the equation for 𝑣𝑣1𝑖𝑖 from conservation of momentum into the energy equation and solve. 

𝑣𝑣2 �
𝑚𝑚2

𝑚𝑚
− 4�

2
= (4𝑣𝑣)2 +

𝑚𝑚2

𝑚𝑚
𝑣𝑣2 

Notice 𝑣𝑣2 cancels in every term!!!   

�
𝑚𝑚2

𝑚𝑚
− 4�

2
= 16 +

𝑚𝑚2

𝑚𝑚
      

�
𝑚𝑚2

𝑚𝑚
�
2

+ �−8
𝑚𝑚2

𝑚𝑚
� + 16 = 16 +

𝑚𝑚2

𝑚𝑚
                              

�
𝑚𝑚2

𝑚𝑚
�
2

+ �−9
𝑚𝑚2

𝑚𝑚
� = 0                                 

𝒎𝒎𝟐𝟐 = 𝟗𝟗.𝟎𝟎𝟎𝟎𝟎𝟎 
Now plug this result back into  

𝑣𝑣1𝑖𝑖 = 𝑣𝑣 �
𝑚𝑚2

𝑚𝑚
− 4� 

𝑣𝑣1𝑖𝑖 = 𝑣𝑣 �
𝟗𝟗𝟗𝟗
𝑚𝑚

− 4� 

𝒗𝒗𝟏𝟏𝟏𝟏 = 𝟓𝟓.𝟎𝟎𝟎𝟎𝟎𝟎 
  

After 

Before 
𝑚𝑚 𝑚𝑚2 =? 𝑣𝑣1𝑖𝑖 =? 

4𝑣𝑣 𝑣𝑣 



7a) TRUE.  Acceleration is constant when rolling without slipping in a straight line.  
Note: acceleration is not constant if the ramp was a circular arc or if we had a pendulum swinging… 
 
7b) 𝒗𝒗 = 𝑹𝑹𝑹𝑹

𝟑𝟑
 

The radius which relates translational and rotational speeds is the radius connected to the ramp/road/string. 
We may use this result for rolling without slipping. 
 
I put part 7c on the next page so I could draw a huge diagram for you to see things better… 
 
  



7c) Rolling motion implies both translation and rotation occur.  Do both forces and torques. 
I’ll choose to do torques about the center of mass (since that technique also works for rolling with slipping). 
On next page I will show the instantaneous pivot method… 

Sum of torques about center of mass Sum of forces down the plane 

Normal force and weight cause no torque since they have lines of 
action through the pivot. 

Σ𝜏𝜏𝐶𝐶𝐶𝐶 = 𝐼𝐼𝐶𝐶𝐶𝐶𝛼𝛼 
𝜏𝜏𝑓𝑓 = 𝐼𝐼𝐶𝐶𝐶𝐶𝛼𝛼 

𝑟𝑟𝑓𝑓𝑓𝑓 sin𝜃𝜃𝑓𝑓 = 𝐼𝐼𝐶𝐶𝐶𝐶𝛼𝛼 
𝑅𝑅
3
𝑓𝑓 sin 90° = 𝐼𝐼𝐶𝐶𝐶𝐶𝛼𝛼 

𝑅𝑅𝑅𝑅
3

= 𝐼𝐼𝐶𝐶𝐶𝐶𝛼𝛼 
This disk rotates about an axis perpendicular to the plane:   

𝐼𝐼𝑐𝑐𝑐𝑐 =
1
2
𝑚𝑚𝑅𝑅2 

Note: in this problem we were told the extra disks produce negligible 
contribution to the moment of inertia. 

𝑅𝑅
3
𝑓𝑓 =

1
2
𝑚𝑚𝑅𝑅2𝛼𝛼 

𝑚𝑚𝑚𝑚 sin 𝜃𝜃 − 𝑓𝑓 = 𝑚𝑚𝑎𝑎 
 

𝑓𝑓 = 𝑚𝑚𝑚𝑚 sin 𝜃𝜃 − 𝑚𝑚𝑎𝑎 
 
Since rolling without slipping can use 𝑎𝑎 = 𝑟𝑟𝛼𝛼. 
Use 𝑟𝑟 = 𝑅𝑅

3
 since that is the radius touching the ramp! 

𝑓𝑓 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝑚𝑚
𝑅𝑅
3
𝛼𝛼 

 
Now plug this result for 𝑓𝑓 into torque equation… 

𝑅𝑅
3
�𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝑚𝑚

𝑅𝑅
3
𝛼𝛼� =

1
2
𝑚𝑚𝑅𝑅2𝛼𝛼 

Group like terms to solve for 𝛼𝛼.  A common mistake is to forget to use 𝑎𝑎 = 𝑟𝑟𝛼𝛼.  If you forget this, the final result 
contains a circular reference and is not considered in good form. 

𝑅𝑅
3
𝑚𝑚𝑚𝑚 sin𝜃𝜃 − 𝑚𝑚

𝑅𝑅2

9
𝛼𝛼 =

1
2
𝑚𝑚𝑅𝑅2𝛼𝛼 

𝑅𝑅
3
𝑚𝑚𝑚𝑚 sin𝜃𝜃 =

11
18

𝑚𝑚𝑅𝑅2𝛼𝛼 

𝜶𝜶 =
𝟔𝟔𝟔𝟔 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽
𝟏𝟏𝟏𝟏𝟏𝟏

≈
𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽

𝑹𝑹
 

𝑚𝑚𝑚𝑚 
𝑟𝑟𝑓𝑓 =

𝑅𝑅
3

 

𝑛𝑛 
𝑓𝑓 

Assuming CW is 
positive direction 

𝛼𝛼 

Assuming down the plane 
is positive direction 

𝑎𝑎 

𝑚𝑚𝑚𝑚 

𝑛𝑛 
𝑓𝑓 

𝜃𝜃 



 

Sum of torques about point of contact (instantaneous pivot) 

Normal force and friction cause no torque since they have lines of action through the pivot. 
 

Σ𝜏𝜏𝐶𝐶𝐶𝐶 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼 

𝜏𝜏𝑚𝑚𝑚𝑚 = (𝐼𝐼𝐶𝐶𝐶𝐶 + 𝑚𝑚𝑑𝑑2)𝛼𝛼 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝜃𝜃𝑚𝑚𝑚𝑚 = �𝐼𝐼𝐶𝐶𝐶𝐶 + 𝑚𝑚�
𝑅𝑅
3
�
2

� 𝛼𝛼 

𝑅𝑅
3
𝑚𝑚𝑚𝑚 sin 𝜃𝜃 = �

1
2
𝑚𝑚𝑅𝑅2 + 𝑚𝑚�

𝑅𝑅
3
�
2

� 𝛼𝛼 

𝑅𝑅
3
𝑚𝑚𝑚𝑚 sin𝜃𝜃 = �

1
2

+
1
9
�𝑚𝑚𝑅𝑅2𝛼𝛼 

𝑅𝑅
3
𝑚𝑚𝑚𝑚 sin𝜃𝜃 =

11
18

𝑚𝑚𝑅𝑅2𝛼𝛼 

𝜶𝜶 =
𝟔𝟔𝟔𝟔 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽
𝟏𝟏𝟏𝟏𝟏𝟏

≈
𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽

𝑹𝑹
 

  

𝑚𝑚𝑚𝑚 𝑟𝑟𝑚𝑚𝑚𝑚 =
𝑅𝑅
3

 

𝑛𝑛 
𝑓𝑓 

Assuming CW is 
positive direction 

𝛼𝛼 

𝜃𝜃𝑚𝑚𝑚𝑚 = 𝜃𝜃 



7d) At this point, you could actually use constant acceleration kinematics since acceleration is actually constant. 
I prefer to show you energy methods since that technique works even when acceleration non-constant. 
I will then check the result using kinematics. 

In this solution I will use 𝑅𝑅𝑅𝑅𝑅𝑅 for rotational kinetic energy and 𝑇𝑇𝑇𝑇𝑇𝑇 for translational kinetic energy. 
𝑅𝑅𝑅𝑅𝐸𝐸𝑖𝑖 + 𝑇𝑇𝑇𝑇𝐸𝐸𝑖𝑖 + 𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖 + 𝑊𝑊 𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐
= 𝑅𝑅𝑅𝑅𝐸𝐸𝑓𝑓 + 𝑇𝑇𝑇𝑇𝐸𝐸𝑓𝑓 + 𝑈𝑈𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓  

When rolling without slipping, friction does no work!  Recall, the point of contact with the road does NOT slip 
relative to the road.This frictional force is present but there is no displacement relative to the road. 
Normal force is perpendicular to displacement, no work from that force either. 
Starting from rest.  Letting lowest point (final position) in the problem have zero height. 

0 + 0 + 𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝜃𝜃 + 0 =
1
2
𝐼𝐼𝜔𝜔2 +

1
2
𝑚𝑚𝑣𝑣2 + 0 

2𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝜃𝜃 = 𝐼𝐼𝜔𝜔2 + 𝑚𝑚𝑣𝑣2 
Divide all by 𝑚𝑚 since it tends to simplify algebra later on… 

2𝑔𝑔𝑔𝑔 sin𝜃𝜃 =
𝐼𝐼
𝑚𝑚
𝜔𝜔2 + 𝑣𝑣2 

 
Remember, rewrite 𝜔𝜔 using 𝑣𝑣 = 𝑅𝑅

3
𝜔𝜔 →    𝜔𝜔 = 3𝑣𝑣

𝑅𝑅
. 

It is bad form to have our final answer for 𝑣𝑣 in terms of omega (this is a circular reference). 

2𝑔𝑔𝑔𝑔 sin𝜃𝜃 =
𝐼𝐼
𝑚𝑚
�

3𝑣𝑣
𝑅𝑅
�
2

+ 𝑣𝑣2 

2𝑔𝑔𝑔𝑔 sin𝜃𝜃 = 𝑣𝑣2 �
9𝐼𝐼
𝑚𝑚𝑅𝑅2

+ 1� 

2𝑔𝑔𝑔𝑔 sin 𝜃𝜃 = 𝑣𝑣2 �
9 �1

2𝑚𝑚𝑅𝑅
2�

𝑚𝑚𝑅𝑅2
+ 1� 

2𝑔𝑔𝑔𝑔 sin 𝜃𝜃 = 𝑣𝑣2 �
11
2
� 

𝒗𝒗 = � 𝟒𝟒
𝟏𝟏𝟏𝟏

𝒈𝒈𝒈𝒈 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽 ≈ 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔�𝒈𝒈𝒈𝒈 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽 

Kinematics check on the next page… 
  

𝜃𝜃 

𝑥𝑥 𝜔𝜔 
ℎ𝑖𝑖 = 𝑥𝑥 sin 𝜃𝜃 

𝑣𝑣 



7d) Continued.  Check previous result using kinematics: 
𝑣𝑣𝑓𝑓2 = 𝑣𝑣𝑖𝑖2 + 2𝑎𝑎Δ𝑥𝑥 

𝑣𝑣2 = 0 + 2 �
𝑅𝑅
3
𝛼𝛼�𝑥𝑥 

𝑣𝑣 = �2𝑅𝑅𝑅𝑅𝛼𝛼
3

 

Plug in the result for 𝛼𝛼 from problem 7c… 

𝑣𝑣 = �2𝑅𝑅𝑅𝑅 �6𝑔𝑔 sin𝜃𝜃
11𝑅𝑅 �

3
 

𝑣𝑣 = � 𝟒𝟒
𝟏𝟏𝟏𝟏

𝒈𝒈𝒈𝒈 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽 

Notice we get the same result as we did using energy methods. 

This is method is probably easier for this particular problem. 

That said, sometimes you really want to know this technique…sometimes acceleration isn’t constant. 

REMEMBER THIS: you shouldn’t use constant acceleration kinematics for a pendulum swinging… 

 
 
 
 
 
 
  



EXTRA CREDIT: 
 
 
 
 
 
 
 
 
 
 

• 𝑥𝑥1 = 𝑠𝑠
2
 is the horizontal coordinate of the center of mass of object 1 (square plate) 

• 𝑚𝑚1 = 𝜎𝜎𝐴𝐴1 = 𝜎𝜎𝑠𝑠2 is the mass of object 1 (square plate) assuming uniform plate density 𝜎𝜎 in units of kg
m2 

• 𝑥𝑥2 = 3
4
𝑠𝑠 is the horizontal coordinate of the center of mass of object 2 (circular plate) 

• 𝑚𝑚1 = 𝜎𝜎𝐴𝐴2 = 𝜎𝜎 𝜋𝜋𝑠𝑠2

16
 is the mass of object 2 (circular plate) assuming uniform plate density 𝜎𝜎 in units of kg

m2 

• If you care, the mass per unit area (𝜎𝜎) relates to standard 3D density (𝜌𝜌) using 
𝜎𝜎 = 𝜌𝜌 × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

 
𝐼𝐼𝑦𝑦𝑦𝑦              =           𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠               −                 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

 
You should use the parallel axis theorem for the thin plate using 𝑎𝑎 = 𝑏𝑏 = 𝑠𝑠 and 𝑑𝑑 = 𝑠𝑠

2
. 

 
You could use the parallel axis theorem on the disk (axis in-plane) using 𝑑𝑑 = 3

4
𝑠𝑠. 

  𝐼𝐼𝑦𝑦𝑦𝑦              =  �
1

12
𝑚𝑚1𝑠𝑠2 + 𝑚𝑚1 �

𝑠𝑠
2
�
2
�   −                 �

1
4
𝑚𝑚2𝑟𝑟2 + 𝑚𝑚2𝑑𝑑2� 

        𝐼𝐼𝑦𝑦𝑦𝑦              =           �
1
3
𝑚𝑚1𝑠𝑠2�                 −                 𝑚𝑚2 �

1
4
�
𝑠𝑠
4
�
2

+ �
3
4
𝑠𝑠�

2

� 

                  𝐼𝐼𝑦𝑦𝑦𝑦              =           
1
3

(𝜎𝜎𝑠𝑠2)𝑠𝑠2               −            �𝜎𝜎
𝜋𝜋𝑠𝑠2

16
� �

1
64

𝑠𝑠2 +
9

16
𝑠𝑠2�          

   𝐼𝐼𝑦𝑦𝑦𝑦             =           0.3333𝜎𝜎𝑠𝑠4             −            0.11351𝜎𝜎𝑠𝑠4                 

𝑰𝑰𝒚𝒚𝒚𝒚 ≈ 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝒔𝒔𝟒𝟒 

𝐼𝐼 𝑡𝑡ℎ𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
1

12
𝑚𝑚𝑏𝑏2 

𝑏𝑏 

𝑎𝑎 

𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1
4
𝑚𝑚𝑅𝑅2 

Remember to also account for the parallel 
axis theorem on both of these shapes!!! 

𝑥𝑥 

𝑦𝑦 

𝑥𝑥 

𝑦𝑦 

𝑥𝑥 

𝑦𝑦 


