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Distribution on this page. Solution begins on the next page.
Note: one very unusual aspect of this exam is that I ended up having to cut the angular momentum problem due to

time constraints. In general I try to have a problem from every chapter. Gee...I wonder if an angular momentum
problem is on the Spring 2023 Final???

Test 3 graded out of 40 (even though 43 possible)

Scores over 100% not possible
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la) & 1b) & 1c) I pretty much ask some variation of this every year.
I would actually do part 1c first, then 1a, and finally 1b.

1c) When two objects collide the forces they exert on each other have equal magnitude in opposite directions.

F10n2 = _FZOnl

la) Typically other forces are negligible during collisions. In essence, we typically assume the force exerted by one
object on the other is approximately equal to the net force on the other object. Newton’s 2™ law for object 2 gives
Fngronz = Mo,
Fionz ® My,
a - Flonz
2 _m2

Similarly, Newton’s 2" law for object 1 gives

- FZonl

a ~ ——

my

If net force magnitude is the same on each object, the smaller mass has more acceleration (magnitude).

1b) Finally, recall that momentum relates to force using

- d . Ap,
FEngronz = Epz = At
1on2 ~ E

Ap, = Fionz At
Here At is the collision time interval. Similarly
Aﬁl ~ FZonl At
If the forces have equal magnitude we expect equal magnitude change in momentum as well!

1d) We are told the collision is perfectly inelastic.
This implies the objects stick together and move in unison after the collision.

Momentum in the x-direction is conserved.
Initially the basketball-sphere system has positive x-direction momentum.
The system continues to have positive x-direction momentum after the collision.

Momentum in the y-direction is also conserved.
Initially the basketball-sphere system has positive y-direction momentum.
The system continues to have positive y-direction momentum after the collision.

The combined basketball-sphere object moves somewhere into the 1 quadrant.



2a) Linear mass density increases with horizontal position according to the density equation
A =cx?

We expect the right end of the rod to have more mass than the left end.

The center of mass position should be closer to the right end of the rod.

2b) The moment of inertia is found using

. 2 | dx
Ly = lapout y-axis = f(radlusfrom y—axis) dm e — L
—
"X
I = fxz (A dx) Mgice = density X lengthg;c,
dm = Adx

L
sz x? (cx? dx)
0

3 cL®
-5
51
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3a) & 3b) The system can be visualized as a solid square plate minus a solid circular plate.

y

-

M xlml - mez
=m; —m, Xey = ———
total 1 M L—m,
In these equations

o X = % is the horizontal coordinate of the center of mass of object 1 (square plate)
e m; = gA; = ogs? is the mass of object 1 (square plate) assuming uniform plate density o in units of %

o X, = zs is the horizontal coordinate of the center of mass of object 2 (circular plate)

2
e my=04,=0 % is the mass of object 2 (circular plate) assuming uniform plate density o in units of %
e If you care, the mass per unit area (o) relates to standard 3D density (p) using

o = p X (plate thickness)

Total mass of the plate is
2

T
Miorar =my = m, = 05% — 0 —— = 0.803705

Notice every term in the center of mass equation has o...mass density will drop out in that result.

XMy — XMy (%) (05%) = (% S) (0 7T1_562>

= = =0.439
Xem m; —m, 2 ms? s
08" =076




4a) & 4b) I chose to draw my FBD like the one shown at right.

Currently my style is to think as little as possible about the reaction forces
I blindly choose them to be R, to the right and R, upwards.

If I get a negative result, the true direction is opposite the direction drawn.

Sum of torques about the pivot (using CCW as positive direction) gives
rpT sinOp — 1, ,;mgsin6,,, =0
Recall, this is a static equilibrium problem...a = 0.
4 L
(gL) Tsinf — >mg sin(90°—0) =0

Solving for m:

8T
m=—tané
59
T
m = 3.583—
g

Sum of forces gives

at the pivot.

Horizontal Force Equation

Vertical Force Equation

R,=-T

R, =mg
T
R, = (3.5§3 E)g

R, ~ 3.583T

Putting the results together in Cartesian form gives
R = (—1.00% + 3.583/)T
The magnitude of this force vector is
R =~ 3.72T




5a) WATCH OUT when converting to RPM.
Many times students forget to put parentheses around 2 in the denominator.

0925rad>< 1 rev y 60s
' s ~2mrad  1min

As a useful check, I keep in mind this conversion should change the number by approximately a factor of 10...
Strictly speaking the initial rotation VECTOR is shown as @; = 8.83 RPM(—}).

~ 8.83 RPM

Assuming you did the rest of the problem correctly I was fine with it if you flipped al/l negative signs...

5b) Several good ways to go about this. Since we have constant angular acceleration:
wf = wf + 2aA0
Here A = 0.100 rev(—j) = 0.6283 rad(—j) while w; = 0 since the disk comes to rest.
0 = w? + 2ah0
o}
206

rad
a~ 10.6809 —-
- s

If you assumed the original rotation direction was positive you should have the minus sign on this result.

5c¢) Because angular acceleration is constant we can use
(J)f = W; + at
Wr — W;
t=-"1—"
a

t~1.359s

5d) INITIAL total acceleration (magnitude) is given by
— 2 2
Qtotal init = [ Atan init + A init

QAtotal init = (ra)z + (rwiz)z

_ f 2 4
Atotal init =T [@° + w;

In this equation, r means distance from axis to the point of interest where one wishes to determine a; ;-
Since our point of interest is on the edge of the disk, this distance is the full radius of the disk (0.375 m).
Finally, notice one must use units of radians for angular quantities « & w; for the units to work out properly!

rad\? rady*
atotal init =~ (0.375 m) <_06899 S_2> + (0.925 T)

m
Qiotal init ~ 0.410 S_Z
5e) WATCH OUT!
Notice the disk is being rotated about an axis in the plane of the disk.
Notice [ = %mr2 instead of the usual I = %mr2 used so often in rolling motion problems!
1, 11 , 1 rad\”

RKE; = Elwi =3 (Zmﬂ) w; = §(2.00 kg)(0.375 m)? (0.925 T) =30.1mj

Again, notice one must use units of % on w; for the units to work out properly.



6a) & 6b) I chose to label my figure as shown at right. Before

In my figure, I am assuming v's are speeds with velocity directions indicated by arrows.
Other reasonable styles are possible and should give the same results as mine shown below. v =2 M, =7

For every type of collision we typically use conservation of momentum. We can do this because
assume collision time is short enough such that external forces are negligible (usually a good

assumption in the real world). After
For elastic collisions we can also assume energy is conserved. 4 v
Conservation of Momentum Conservation of Energy
1 2 1 2 1 2
mvy; = m(=4v) + myv 5 mvi; = Em(4v) +omyv

For me it seemed easiest to divide all terms in both equations by m.

I also cancelled the %’s in the energy equation right away.

Conservation of Momentum Conservation of Energy
mp
vy = —4v + pe v m
vZ = (4v)%* + —v?
m, m
Vi =V (— - 4)
m

Now I sub in the equation for v;; from conservation of momentum into the energy equation and solve.
m 2 m
v? (—2—4) = (4v)% + —v?
m m
Notice v? cancels in every term!!!
m 2 m
(“2-4) =16+~
m m
2

G)

+(—8%)+16=16+%

Now plug this result back into



7a) TRUE. Acceleration is constant when rolling without slipping in a straight line.
Note: acceleration is not constant if the ramp was a circular arc or if we had a pendulum swinging...

To)v ==
The radius which relates translational and rotational speeds is the radius connected to the ramp/road/string.
We may use this result for rolling without slipping.

I put part 7c on the next page so I could draw a huge diagram for you to see things better...



7¢) Rolling motion implies both translation and rotation occur. Do both forces and torques.
I’11 choose to do torques about the center of mass (since that technique also works for rolling with slipping).
On next page I will show the instantaneous pivot method...

Assuming CWN
positive direction
a

Assuming down the plane
is positive direction

a

Sum of torques about center of mass Sum of forces down the plane

Normal force and weight cause no torque since they have lines of
action through the pivot.
ZTCM = ICMa
T = Ieya mgsinf — f =ma
Tef sinfy = Igya .
R f =mgsinf —ma
§f sin90° = oy
Rf Since rolling without slipping can use a = ra.
3 = Ieya User = :; since that is the radius touching the ramp!
This disk rotates about an axis perpendicular to the plane: )
f =mgsin —mga
Iom = =mR?
em — 5
Note:. in Fhls problem we were Fold Fhe extra disks produce negligible Now plug this result for f into torque equation. B
contribution to the moment of inertia.

Ro_1 o,
5/ =gmRia

R . R 1
E(mg sin@ — m§a> = EmRza
Group like terms to solve for a. A common mistake is to forget to use a = ra. If you forget this, the final result

contains a circular reference and is not considered in good form.
R _ R? 5
Emg sing — m?a = EmR a
R 11
§mg sinf = EmR a

_6gsinf® 0.545gsin 6
"1k ~ R




Assuming CW is
positive direction

a

Sum of torques about point of contact (instantaneous pivot)

Normal force and friction cause no torque since they have lines of action through the pivot.

Ltey = Linst @

ng = (ICM + mdz)a

R 2
TigMg sin 6, , = (ICM +m <§> )a

R o 1 24 (R)2
3mgsm = Em m; a

R o 1+1) o2
3TT'I,gSll’l _(E §m a

i 9_11 R
zmgsing = =mR%a

__6gsinf 0.545gsin6
- 11R R




7d) At this point, you could actually use constant acceleration kinematics since acceleration is actually constant.
I prefer to show you energy methods since that technique works even when acceleration non-constant.
I will then check the result using kinematics.

h; = x sin|@

In this solution I will use RKE for rotational kinetic energy and TKE for translational kinetic energy.
RKE; + TKE; + Ugyqpi + W ext = RKE; + TKE; + Uy ¢

non—con

When rolling without slipping, friction does no work! Recall, the point of contact with the road does NOT slip
relative to the road.This frictional force is present but there is no displacement relative to the road.

Normal force is perpendicular to displacement, no work from that force either.

Starting from rest. Letting lowest point (final position) in the problem have zero height.

_ 1 1
0+0+mgxsm9+0=§Iw2+5mv2+0

2mgx sin 0 = lw? + mv?
Divide all by m since it tends to simplify algebra later on...

I
2gxsinf = —w? + v?
m

. . R 3v
Remember, rewrite w using v = ; w > w= F

It is bad form to have our final answer for v in terms of omega (this is a circular reference).

) _9_1(3v)2+ .
gxsing = —(— v

91
2gx5in0 = v? (a4 1)
gx sin v mR2+

9 (%mRZ)

mR? +1

2gxsin@ = v?

11
2gxsin @ = v? (7)

/4
v= ngsine ~ 0.603,/gxsin 6

Kinematics check on the next page...



7d) Continued. Check previous result using kinematics:
v} = v} + 2ahx

O+2(R
Ba

-

6g st
11R

/—gx sin 6

Notice we get the same result as we did using energy methods.

Plug in the result for @ from problem 7c...

This is method is probably easier for this particular problem.
That said, sometimes you really want to know this technique...sometimes acceleration isn’t constant.

REMEMBER THIS: you shouldn’t use constant acceleration kinematics for a pendulum swinging...



EXTRA CREDIT:

o x; = % is the horizontal coordinate of the center of mass of object 1 (square plate)
e m; = gA; = gs? is the mass of object 1 (square plate) assuming uniform plate density o in units of m—‘(’;

o X, = Zs is the horizontal coordinate of the center of mass of object 2 (circular plate)
z, . . . . . . . K
e m =04,=0 % is the mass of object 2 (circular plate) assuming uniform plate density ¢ in units of m—gz
e Ifyou care, the mass per unit area (o) relates to standard 3D density (p) using
o = p X (plate thickness)

lyy = Isquare - Idisk
b
<>
la
I thin = —mb? 1
siate 12 laisk = 7mR?

Remember to also account for the parallel
axis theorem on both of these shapes!!!

You should use the parallel axis theorem for the thin plate usinga = b = s and d = %

You could use the parallel axis theorem on the disk (axis in-plane) using d = ZS.

1 $\2 1
L, = (Emls2 +m, (E) ) - (Zmzrz +m2d2>
1 1,5\2 /3 \?
by = Gms) - om (z(z) +<ZS>)
1 ms?\ /1 9
by = glshs - ("E) (625 *16")
L, = 0.33330s* - 0.113510s*

I,, ~ 0.2200s*



