161sp24t2aSoln

Distribution on this page. Solutions begin on the next page.

1a) Compute initial kinetic energy using

$$K_i = \frac{1}{2}mv_i^2 = \frac{1}{2}(8.88 \text{ kg})(5.00 \frac{\text{m}}{\text{s}})^2 = 111.0 \text{ J}$$

1b) Average power delivered by the net force on an object is computed using

$$\mathcal{P}_{avg} = \frac{\Delta K}{\Delta t} = \frac{K_f - K_i}{\Delta t} = \frac{\frac{1}{2} (8.88 \text{ kg}) \left(12.00 \frac{\text{m}}{\text{s}}\right)^2 - 111.0 \text{ J}}{3.00 \text{ s}} = 176.1 \text{ W}$$

1c) Acceleration (magnitude) of the block is the slope (magnitude) of the block's vt-plot.

$$a = \frac{rise}{run} = \frac{7.00 \frac{111}{s}}{3.00 s} = 2.333 \frac{m}{s^2}$$

1d) WATCH OUT!

We were asked about a force.

Hopefully your gut instinct is to immediately consider an FBD to get a feel for the problem. We see

$$T - mg = ma$$
$$T = m(g + a)$$

Plug in known parameters to find

$$T \approx 107.7$$
 N

1e) Instantaneous power delivered by the cable (tension force only) at time t = 3.00 s is given by

$$\mathcal{P}_{tension} = T \cdot \bar{v}$$
$$\mathcal{P}_{tension} \approx (107.7 \text{ N} \hat{j}) \cdot (12.00 \frac{\text{m}}{\text{s}} \hat{j})$$
$$\mathcal{P}_{tension} \approx 1.293 \text{ kW}$$

1f) The force of gravity is always anti-parallel to displacement. Gravity is doing **negative work** in this case.

2a) For two blocks sliding in unison we can use a system FBD. We could also draw two separate FBDs.

Block 2m	Block <i>m</i>	m + 2m System	
$\Sigma F_x: T + 2mg\sin\theta - n_{12} = 2ma$	$\Sigma F_x: \ n_{12} + mg\sin\theta = ma$	$\Sigma F_x: T + 3mg\sin\theta = 3ma$	
$\Sigma F_{y}: n_2 + 2mg\cos\theta - f_{12} = 0$	$\Sigma F_{y}: f_{12} - mg\cos\theta = 0$	$\Sigma F_{y}: n_{2} + 3mg\cos\theta = 0$	

We are asked to find the *minimum* thrust required to prevent block m from sliding. Therefore we also know

$$f_{12} = \mu_s n_{12}$$

Using force equations from block m gives

$$f_{12} = mg\cos\theta$$
$$\mu_s n_{12} = mg\cos\theta$$
$$\mu_s (ma - mg\sin\theta) = mg\cos\theta$$
$$a = \frac{g\cos\theta}{\mu_s} + g\sin\theta$$

I'll plug this result into the system FBD to determine T.

$$T + 3mg\sin\theta = 3ma$$
$$T = 3ma - 3mg\sin\theta$$
$$T = 3m(a - g\sin\theta)$$
$$T = 3m\left(\frac{g\cos\theta}{\mu_s} + g\sin\theta - g\sin\theta\right)$$
$$T = \frac{3mg\cos\theta}{\mu_s}$$

As a check, we should get the same result plugging into the force equations for 2m.

$$T + 2mg\sin\theta - n_{12} = 2ma$$

$$T = 2ma + n_{12} - 2mg\sin\theta$$

$$T = 2ma + (ma - mg\sin\theta) - 2mg\sin\theta$$

 $T = 3ma - 3mg\sin\theta$

From there I can tell I will get the same result as before...

2b) If $T_{actual} > T_{min}$, block *m* is no longer on the verge of slipping. We still have $f_{12} = mg \cos \theta$ but now the condition $f_{12} < \mu_s n_{12}$ applies. Think if you could somehow increase f_{12} , block *m* would sliding upwards due to friction...that makes no sense! 3) Notice the question is asking about speed.

We also have a spring changing length (implying forces in the problem are *not* constant). While not *always* the case, these signs *usually* indicate we should try an energy problem.

The upper figure at right shows the initial state:

- spring is initially unstretched
- block 2 is moving with unknown initial speed v
- block 1 is tied to block 2, it also moves with speed v

The next figure below shows the final state:

- block 2 has traveled distance *L*
- block 2 center of mass goes up $L \sin \theta$
- block 2 barely reaches top of ramp; it must be at rest
- block 1 is moving in unison with 2; it is also at rest
- spring had to stretch distance *L*
- block 1 experienced negligible friction
- friction does non-conservative work on block 2

The next figure below (3rd figure) is the FBD of block 2. This is useful to determine

$$f = \mu_k n$$
$$f = \mu_k (2m) g \cos \theta$$

The final figure shows displacement and friction. This is useful for determining

 K_i

$$W_{friction} = fL \cos 180^{\circ}$$

 $W_{friction} = -2\mu_k mgL \cos \theta$

Now do the energy problem:

$$+ U_{spring i} + U_{grav i} + W_{non-concrvative} = K_f + U_{spring f} + U_{grav f}$$
$$\frac{1}{2} 3mv^2 + 0 + 0 - 2\mu_k mgL \cos \theta = 0 + \frac{1}{2}kL^2 + 2mgL \sin \theta$$

Probably easiest to first multiply all terms by 2 to eliminate the fractions...

$$3mv^2 - 4\mu_k mgL\cos\theta = kL^2 + 4mgL\sin\theta$$

$$v = \sqrt{\frac{kL^2 + 4\mu_k mgL\cos\theta + 4mgL\sin\theta}{3m}}$$

Maybe it *slightly* easier to check the units if you factor out $\frac{L}{3}$ and cancel some m's:

$$v = \sqrt{\frac{L}{3}} \left(\frac{kL}{m} + \frac{4}{3} \mu_k g \cos \theta + 4g \sin \theta \right)$$

Either of these last two forms seems a reasonable answer. Units check.

Other checks:

- If you have more friction (larger μ_k), you'd require more initial speed.
- If you have a longer ramp (larger L you'd require more initial speed.
- If the spring was more stiff (larger k), you'd require more initial speed.

180

4a) Force is given by

$$F_x = -\frac{dU}{dx} = -slope$$

At x = 1.00 nm the plot has a *negative* slope. This implies a *positive* force at x = 1.00 nm. Positive value of F_x implies **force to the right**.

4b) Again:

$$F_x = -slope$$
$$F_x = -\frac{rise}{run}$$

Pick two points fairly close to the point of interest. Using the pink & purple points (closest to x = 1.00 nm).

$$F_x = -\frac{(-10.0 \text{ eV}) - (10.0 \text{ eV})}{(1.25 \text{ nm}) - (0.80 \text{ nm})} \approx 44.4 \frac{\text{eV}}{\text{nm}}$$

If you chose the two white points you get $F_x \approx 50 \frac{\text{eV}}{\text{nm}}$.

Both seem like reasonable estimates.

HOWEVER, you were asked to give the result in NEWTONS...don't forget to convert! Using the pink and purple points I found

$$F_x \approx 44.4 \frac{\text{eV}}{\text{nm}} \times \frac{1.602 \times 10^{-19} \text{ J}}{1 \text{ eV}} \times \frac{1 \text{ nm}}{1 \times 10^{-9} \text{ m}} \approx 7.11 \times 10^{-9} \text{ N}$$

Using the white points I found

$$F_x \approx 50 \frac{\text{eV}}{\text{nm}} \times \frac{1.602 \times 10^{-19} \text{ J}}{1 \text{ eV}} \times \frac{1 \text{ nm}}{1 \times 10^{-9} \text{ m}} \approx 8.01 \times 10^{-9} \text{ N}$$

If the result had been negative, I'd use an absolute value to get the magnitude.

4c) We want the minimum initial speed required for the particle to travel from $x_i = -5.00$ nm to x = +4.50 nm.

Notice the particle will lose the most kinetic energy as it crosses over the potential hill at $x_f = 0$ nm!!!

Do an energy problem using $x_f = 0$ nm with $v_f = 0$! Remember to convert those eV's!!!

5a) I drew a set of FBD's for each block to help me visualize the forces. There is no acceleration in the vertical direction.

This implies upwards forces must balance downwards forces.

$$n_{12} = F\sin\theta + m_1g$$

$$m_{12} > m_1 g$$

5b) It is unclear if the box (m_1) is on the verge of slipping.

In the real world, it is exceedingly unlikely for a person to push with the perfect acceleration such that the box of brains is on the verge of slipping.

In practice, either the box slides (which implies $f_{12} = \mu_k n_{12}$) or friction holding the box in place is less than the max possible amount (which implies $f_{12} < \mu_s n_{12}$).

The wording of *this* problem statement implies the overwhelming likely scenario is:

$$f_{12} < \mu_s n_{12}$$

5c) Friction acts to the *left* on the dolly.

5d) Friction does *positive* work *on the dolly* (\vec{f}_{12} points same direction as dolly's displacement).

5e) Normal force between the blocks does *zero* work on the dolly (\vec{n}_{12} points perpendicular to dolly's displacement).

5f) By Newton's 3rd law, Len pushes on the box with equal magnitude to the force exerted by the box on Len.

5g)

Action	The earth exerts a gravitational force on the dolly directed downwards. Object exerting force type of force object experiencing force direction of force			
Reaction	The dolly exerts a Object exerting force	a gravitational for type of force	orce on the earth directe object experiencing force	d upwards. direction of force

6a) Don't overthink this one. We can use either $a_c = \frac{v^2}{r}$ or $a_c = r\omega^2$. We were also given the period (T). One could use

 $distance_{around \ circle} = rate \times period$

$$2\pi r = v\mathbb{T}$$
$$v = \frac{2\pi r}{\mathbb{T}}$$
$$2\pi$$

Alternatively, one could use

$$\omega = \frac{2\pi}{\mathbb{T}}$$

Either way, one finds

$$a_c = \frac{4\pi^2 r}{\mathbb{T}^2}$$

Rearrange to determine r...

$$=\frac{a_c \mathbb{T}^2}{4\pi^2}$$

Now write this as a decimal number with three sig figs times an expression involving the givens.

r

$$r = \frac{2.34g\mathbb{T}^2}{4\pi^2} \approx \mathbf{0.0593}g\mathbb{T}^2$$

6b) Using the vertical force equation form the FBD one finds

$$f = mg$$

The minimum coefficient is found by assuming the rider is on the verge of slipping.

$$\mu_s \mathbf{n} = mg$$

Using the horizontal force equation from the FBD one finds

$$n = ma_c$$

$$n = 2.34mg$$

One could quickly determine μ_s using a ratio:

$$\frac{\mu_s n}{n} = \frac{mg}{2.34mg}$$
$$\mu_s = \frac{1}{2.34}$$
$$\mu_s \approx 0.427$$

7a) Do energy methods. Work from friction & drag is negligible. Normal force does zero work (perpendicular to displacement).

$$mgh_i + \frac{1}{2}mv_i^2 = mgh_f + \frac{1}{2}mv_f^2$$

Multiply all by $\frac{2}{m}$ to reduce clutter.

 $2gh_i + v_i^2 = 2gh_f + v_f^2$ Set lowest height to zero, $h_f = R(1 - \cos \theta)$ and $v_i = v_0$:

$$v_f = \sqrt{v_0^2 - 2gR(1 - \cos\theta)}$$
$$v_f \approx 1.779 \frac{\mathrm{m}}{\mathrm{s}}$$

7b) Consider the FBD at right labeled *Ideal Speed*. Notice we set the normal force to zero. In this case the force equation becomes:

$$mg = ma_{c \ ideal}$$
$$g = \frac{v_{ideal}^{2}}{R}$$
$$v_{ideal} = \sqrt{Rg} \approx 2.27 \frac{m}{s}$$

7c) Because *actual* speed is *lower* than *ideal* speed, we expect n > 0. **Think:** at low speeds you know you need $n_{top} > 0$ to support mg. The force equation becomes:

$$mg - n_{top} = ma_{c \ actual}$$
$$n_{top} = m\left(g - \frac{v_{actual}^2}{R}\right)$$
$$\vec{n}_{top} \approx 1.585 \text{ N } \hat{j}$$

7d) I choose to draw \vec{n} directed radially *outwards*. If I get a negative result, the normal force must be directed radially *inwards*.

$$mg \cos \theta - n_{@ 37.5^{\circ}} = ma_c @ 37.5$$
$$n_{@ 37.5^{\circ}} = m\left(g \cos \theta - \frac{v_0^2}{R}\right)$$
$$\vec{n}_{@ 37.5^{\circ}} = -0.967 \text{ N } \hat{r}$$

7e) Finally, use the tangential force equation.

I choose to align my tangential coordinate axis in the same direction as tangential acceleration so my result would be positive. Since we want the *magnitude* of a_{tan} , this works out well.

$$mg \sin \theta = ma_{tan}$$
$$a_{tan} = g \sin \theta$$
$$a_{tan} \approx 5.97 \frac{m}{s^2}$$

Initial Position FBD Draw n radially outwards. If you get a negative number, \vec{n} must point radially inwards.

