
Newton’s Second Law Part II 
 
Apparatus:  Air track glider (1 per track), air tracks, air supplies, air supply hoses & power cords, air track 
accessories kit, wood blocks, scissors, photogate heads, photogate interface cables, photogate stands, pulley 
cord, meter sticks, calipers, PASCO Science Workshop 750 Interface & Power Supplies 
 
Purpose:  To gain additional practice drawing force diagrams and solving force problems using Newton's 2nd Law.  
To predict and measure the acceleration of a cart up an inclined track pulled by a hanging mass. 
 
Procedure: 
 

 Before raising one end of the air track, verify it is level.  To be sure it is level place a cart on the leveled air 
track at rest.  If the cart starts moving it is not quite level.   

 Place one of the black flags on the glider.  Measure the length ܮ of the black flag by placing up to the air 
track (which has a ruler built into it). 

 Record the mass of the glider as ݉ଵ. 

 Raise one end of the air track by placing a wooden block under the single leg of the air track. 

 Measure the distance between the legs ܦ and the height of the block ݄.  Use calipers for ݄. 

 It turns out that in your equations today, only sin  used, we ߠ appears.  Rather than determining the angle ߠ
can use ܦ and ݄	to determine sin  and one ܦ directly!  Draw a triangle labeling the sides (one should be ߠ
should be ݄).  Determine if sin  .݄/ܦ or ܦ/݄ is given by ߠ

 Prepare the track with a pulley at the raised end.  The string that runs over the pulley should connect to both 
a mass hanger and to the glider. 

 Open the Data Studio program on the computer. 

 Once you get to the interface set-up window add two photogates to the interface box.  You will want to 
measure the time in each gate and the velocity in each gate.  The instructions for doing this are in the 
appendices. 

 Set-up two photogates above the air track.  The photogates should be set up to have the black metal flag on 
the glider pass through the photogate.  You can verify this if the little red light on the photogate turns on as 
the black flag crosses through the photogate. 

 ALSO, the photogates should be set up in such a way that the glider passes through both photogates prior to 
the mass hanger reaching the ground.  Place them as far apart as possible while still allowing this to occur.  
Try to pick a convenient distance like 0.500 m. 
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 Once you are certain that the photogates are properly set up, hang a mass on the mass hanger that is 
substantial enough to cause the glider to slowly accelerate up the plane.  With a single block (or two 
blocks) you’ll probably need to use all the little masses in the air track accessories kit.  In general, a mass 
that is more than ݉ଵ sin  .will cause the block to slide up (perhaps about 15 or 20 grams) ߠ

 The photogates record the time it takes for the black flag to cross through the first photogate t0 and the 
second photogate ݐ.  Earlier you recorded the length of the black flag.  You may assume the cart moves at 
an approximately constant speed during the time the photogate activated.  Also, you know that during the 
time the photogate is activated the cart must travel the length of the flag. Use these numbers to calculate the 
velocity of the cart at the first photogate (ݒ଴ ൌ ݒ) ଴) and at the second photogateݐ/ܮ ൌ  This should  .(ݐ/ܮ	
also be recorded in your data by the DataStudio program.  Check a few to be sure it is working and then 
you can stop doing the calculation yourself. 

 Now use the velocity of the first photogate (ݒ଴), the velocity at the second photogate (ݒ), and the distance 
between the photogates (ݔ) to determine the experimental acceleration of the glider.  Hint: Use the 
appropriate 1D kinematics equations.  In your calculations section, first solve the appropriate equation for 
ܽ.  Then plug in the numbers and show one sample calculation. 

 Repeat this experiment 10 times; 5 times each for two angles with the same hanging mass ࢓૛. 
 

In your calculations section: 

 Derive the expression which determines ܽ௘௫௣ in terms of the velocities and ݒ଴, ,ݒ  .ݔ	&

 Draw a free body diagram (FBD) for both the glider and the mass hanger.  Label the glider as ݉ଵ and the 
mass hanger as ݉ଶ.  Assume the object will accelerate up the plane and that the air track is essentially 
frictionless. 

 Use Newton’s laws to derive a formula for the acceleration in terms of the masses, the angle, and the 
acceleration due to gravity.  This is the theoretical acceleration.  Check the units. 

 Calculate the theoretical acceleration by plugging numbers into the formula you derived from Newton’s 
laws earlier. 

 Recall that ߪ௔೐ೣ೛ is essentially ܽߜ௘௫௣.  Use this to estimate the %precision.  Note: if the standard deviation 

is zero then you must use another method to determine the error. 

 Determine the percent difference for this experiment. 
 
Conclusions: 
1. Were Newton’s laws in good agreement with kinematics?  Compare the %precision to the %difference.  

Comments to help you understand this appear on the next page of the handout. 
2. Looking back on all the data you took, is there a single measurement that stands out as the largest contributor to 

error?  Defend your answer. 
3. Suppose ݉ଶ ≫ ݉ଵ.  What approximate acceleration magnitude should the blocks have? 
4. Suppose the angle was 0°. How does the equation for the theoretical acceleration simplify?  Write down the 

simplified formula and compare it to the formula from last week’s lab… 
5. What if the angle was 90°?  Write down the formula for ܽ௧௛ in this case & compare your theoretical 

acceleration to the Atwood’s Machine example in your textbook.  Does it make sense at 90° if the masses are 
equal?   

 
Going Further: Create a contour plot in MATLAB showing ܽ for ݉ଶ ൌ 0		to		400g, ߠ ൌ 0		to		90°, & ݉ଶ ൌ 200g. 
  



Comments on % precision versus % difference 
 

 Think of % precision as the number of sig figs on your final result.  If you have a lot of sig figs on your 
final result it is very precise (lots of sig figs).  This can be true even if your answer is “way off”. 

 Think of % percent difference as quantifying how off you are from theory.  

 If % difference is greater than % precision, the experiment is NOT in good agreement with theory. 
You have small bullet holes, closely grouped hitting far from the bull’s eye. 

 If % difference is less than (or approximately equal to) % difference, the experiment is in good agreement 
with theory.  Most of the bullets are hitting the bull’s eye.  Note: in experiments with large % precision, 
(huge bullets) and you are very likely to agree with theory (to hit the target), but that doesn’t mean your 
results are very useful. 

 We strive for experiments with small bullets (good precision) and hit the target (good agreement) 
 
 
 
The upper figure at right shows one possible target diagram for this experiment.   
Several measurements were taken and each measurement had at least three sig figs. 
Because the individual measurements have several sig figs, each appears as a tiny dot. 
 
Unfortunately, each measurement differs significantly from the others. 
Since we took several measurements the target looks like it was hit with a shotgun blast. 
 
Distance from the bull’s-eye to the center of the shotgun blast represents % difference.   

The spread in the dots (blue circle) represents % precision ቀ
ఙ

௔௩௘௥௔௚௘
ൈ 100%ቁ. 

Notice the % precision looks like it is about 4% based on the scale of the 5% ring. 
 
 
 
The lower figure at right shows another possible target diagram for this experiment.   
In this case, the measurements each have nearly identical values. 
 
Unfortunately, each individual measurement might have only 1 or 2 sig figs. 

Each bullet radius is larger than the blue circle defined by 
ఙ

௔௩௘௥௔௚௘
ൈ 100%. 

 
Distance from the bull’s-eye to the center of the shotgun blast represents % difference.   
In this case we should use sig fig rules or propagation of error techniques to compute % 
precision.  In this case the % precision looks like it is about 5% based on the scale of the 5% ring. 
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