
1

1

Coding Options for PHYS 161 Oral Presentation 2

Your ultimate goal is to create a simulation which correctly animates the motion of objects for a wide range of
masses, angles, applied force magnitudes, and frictional coefficients. In addition, your code must display a correct
FBD for each mass and with labeled arrows. Your code must also display numerical values (formatted without
excessive sig figs) for all forces and acceleration.

Trust me: the animation and drawing everything will be easy compared to understanding the force equations and if
statements. The hard part is using FBDs and force equations to derive a correct set of if statements. Ignore
animation and the visual aspects of the code for the time being.

For all codes you might first make a list of initial parameters similar to the one shown below.
Not all codes will use all parameters. Some codes may require additional parameters.

m_1=1.00 #in units of kg
m_2=2.00 #in units of kg
mu_s12=0.5
mu_k12=0.3
g=9.8 #in units of m/s^2
theta=radians(60.0) #use radians to correctly compute trig functions
friction_direction=vec(0,0,0)
friction_magnitude=0 #in units of N
normal_direction=vec(0,0,0)
normal_magnitude=0 #in units of N
tension_magnitude=vec(0,0,0) #in units of N
weight_1 = vec(0, -1*m_1*g, 0) #in units of N
weight_2 = vec(0, -1*m_2*g, 0) #in units of N
tension_1 = vec(0,0,0) #in units of N
tension_2 = vec(0,0,0) #in units of N

Your first sub-goal is to correctly compute all the forces and the accelerations as both magnitudes and vectors for the
initial set of conditions. Then verify your code still produces correct outputs with the additional test cases shown
later in the document. Once this is done, start doing the visuals and the animation.

In order to correctly compute the forces, each code must use a set of if statements to select an appropriate set of
equations based on the FBD and applicable friction conditions. These equations and conditions will be based on
force magnitudes. Later, to animate the motion, the code should convert these force magnitudes to vectors.

Note: one could handle acceleration in one of two ways. One could define acceleration_direction &
acceleration_magnitude similarly to the work shown above. You could use force equations and solve them
for acceleration_magnitude. This work can be checked in code using Σ�⃑�𝐹 = 𝑚𝑚�⃑�𝑎.

Option 1 (details page 3) Option 2 (details page 6) Option 3 (details page 8)

1 2

𝜃𝜃

𝑚𝑚

𝜃𝜃

2

1
𝐹𝐹

𝜃𝜃

2

2

Before plunging into your own codes let me give you an example of a code I wrote.
I deliberately over-engineered this code since everyone immediately copies my code then tries to modify it.
Hopefully the style I chose will make it easier for you to modify.
I also included a second code which will be useful if you need to rotate the incline or use a pulley with strings.

A word of caution: Each code has wildly different conditional statements.
Yours will not look like mine. In fact, there are many different possible correct sets of conditional statements.
You must analyze your FBDs and your force equations to get your conditional statements.

https://www.glowscript.org/#/user/robjorstadahc/folder/ForceSims/program/box.with.friction

https://www.glowscript.org/#/user/robjorstadahc/folder/phys161/program/2blox.pulley.ramp.starter

https://www.glowscript.org/#/user/robjorstadahc/folder/ForceSims/program/box.with.friction
https://www.glowscript.org/#/user/robjorstadahc/folder/phys161/program/2blox.pulley.ramp.starter

3

3

Option 1: A two block system is designed as shown. Block 1 has mass 𝑚𝑚1 and experiences
coefficients of friction 𝜇𝜇𝑠𝑠 and 𝜇𝜇𝑘𝑘. The ramp has fixed angle 𝜃𝜃. The system is released from rest.

Conditional statement for friction direction?
First consider the frictionless case. Draw an FBD assuming acceleration is zero!
Solve this equation for 𝑚𝑚2 in terms of 𝑚𝑚1 and 𝜃𝜃.
If 𝑚𝑚2 > 𝑚𝑚1 sin 𝜃𝜃, friction points up the plane. Otherwise friction points down the plane.
We don’t yet know if the blocks will actually move, but this tells us the direction friction points.
Note: a vector pointing up the plane is given by up_plane=vec(cos(theta),sin(theta),0) .
Create an if statement in the code which assigns friction_direction correctly based on the condition.

Case 1: Now assume friction is present but 𝑚𝑚2 is large enough to make 𝑚𝑚1 slides up the ramp.
Draw a correct FBD and write a correct set of force equations for each block with friction present.
Show that when if 𝑚𝑚2𝑔𝑔 > 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚1𝑔𝑔 sin𝜃𝜃 it makes 𝑚𝑚1 slides up the ramp.
Tip: determine 𝑛𝑛 and plug it into 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜇𝜇𝑠𝑠𝑛𝑛.
Solve the inequality for 𝑚𝑚2 to determine a conditional statement for your code!
Expect non-zero acceleration up the plane and use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
Combine the force equations & eliminate the unknown forces to find

𝑎𝑎𝑢𝑢𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝 = 𝑔𝑔
𝑚𝑚2 − 𝑚𝑚1(sin 𝜃𝜃 + 𝜇𝜇𝑘𝑘 cos 𝜃𝜃)

𝑚𝑚𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝

You can then use this acceleration to solve algebraically for tension magnitude!

Case 2: There is enough friction to prevent the block from sliding even though you 𝑚𝑚2 is large
(compared to 𝑚𝑚1 sin𝜃𝜃). In this case tension parallel to the plane should balance with the component
of weight down the plane & friction down the plane. No sliding should occur. We expect 𝑎𝑎 = 0 in
this particular scenario. Note: it is not sliding due to static friction between 𝑚𝑚1 and the ramp.
WATCH OUT! It is not sliding: do not use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
It is not on the verge of slipping: do not use 𝑓𝑓 = 𝜇𝜇𝑠𝑠𝑛𝑛.
Get 𝑓𝑓 by solving for it in the force equation parallel to the plane!
I hope it is obvious why 𝑇𝑇 = 𝑚𝑚2𝑔𝑔 and 𝑎𝑎 = 0.

Discussion continues on the next page…

1 2

𝜃𝜃

1 2

𝜃𝜃

𝑎𝑎1

𝑎𝑎2

1 2

𝜃𝜃

𝑎𝑎1 = 0

𝑎𝑎2 = 0

4

4

Case 3: Now assume 𝑚𝑚2 < 𝑚𝑚1 sin 𝜃𝜃 but there is enough friction to prevent the block from sliding.
In this case tension parallel to the plane should balance with the component of weight down the plane
& friction up the plane. No sliding should occur. We expect 𝑎𝑎 = 0 in this particular scenario. Note:
it is not sliding due to static friction between 𝑚𝑚1 and the ramp.
WATCH OUT! It is not sliding: do not use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
It is not on the verge of slipping: do not use 𝑓𝑓 = 𝜇𝜇𝑠𝑠𝑛𝑛.
Get 𝑓𝑓 by solving for it in the force equation parallel to the plane!

Case 4: Now assume 𝑚𝑚2 is too small to prevent 𝑚𝑚1 from sliding down the ramp.
Show that when if 𝑚𝑚2𝑔𝑔 + 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 < 𝑚𝑚1𝑔𝑔 sin𝜃𝜃 it makes 𝑚𝑚1 slides up the ramp.
Solve the inequality for 𝑚𝑚2 to determine a conditional statement for your code!
Expect non-zero acceleration up the plane and use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
Combine the force equations & eliminate the unknown forces to find 𝑎𝑎𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝 .
Note: 𝑎𝑎𝑑𝑑𝑝𝑝𝑑𝑑𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝 is similar to but not exactly the same as 𝑎𝑎𝑢𝑢𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝.
I think some minus signs get flipped.
You can then use 𝑎𝑎𝑢𝑢𝑝𝑝 𝑡𝑡ℎ𝑝𝑝 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝 to solve algebraically for tension magnitude!

A set of test cases is shown on the nest page.

1 2

𝜃𝜃

𝑎𝑎1 = 0

𝑎𝑎2 = 0

1 2

𝜃𝜃
𝑎𝑎1

𝑎𝑎2

5

5

Using 𝑚𝑚1 = 1.00 kg, 𝜇𝜇𝑠𝑠 = 0.5, 𝜇𝜇𝑘𝑘 = 0.3, 𝑔𝑔 = 9.8 m
s2

, and 𝜃𝜃 = 60° one expects the following code
behavior. I was rounding all the time to get this done; expect errors in third digit.

Anytime 𝑚𝑚2 ≥ 0.866 kg friction should point down the plane.

• Block 1 should slide (move) up the plane whenever 𝑚𝑚2 > 1.116 kg.
• I found 𝑚𝑚2 = 1.117 kg produced 𝑎𝑎 = 0.45 m

s2
 while 𝑚𝑚2 = 1.5 kg produced 𝑎𝑎 = 1.88 m

s2
.

• While block 1 slides up-plane we expect 𝑓𝑓 = 1.47 N and 𝑓𝑓 =< −0.735,−1.27, 0 > N.
• Anytime mass 2 is in the range 0.866 kg < 𝑚𝑚2 < 1.116 kg we expect 𝑓𝑓 < 2.45 N.
• Normal force has magnitude 𝑛𝑛 = 4.9 N and vector 𝑛𝑛�⃑ =< −4.24, 2.45, 0 > N.

Anytime 𝑚𝑚2 < 0.866 kg friction should point up the plane.

• Block 1 should slide (move) down the plane 𝑚𝑚2 < 0.616 kg.
• I found 𝑚𝑚2 = 0.60 kg produced 𝑎𝑎 = 0.71 m

s2
 while 𝑚𝑚2 = 0.40 kg produced 𝑎𝑎 = 2.21 m

s2
.

• While block 1 slides down-plane we expect 𝑓𝑓 = 1.47 N and 𝑓𝑓 =< 0.735, 1.27, 0 > N.
• Anytime mass 2 is in the range 0.616 kg < 𝑚𝑚2 < 0.866 kg we expect 𝑓𝑓 < 2.45 N.

If you set 𝑚𝑚2 = 0:

• Friction points up the plane with magnitude 𝑓𝑓 = 1.47 N giving vector 𝑓𝑓 =< 0.735, 1.27, 0 > N.
• Acceleration down the plane has magnitude 𝑎𝑎 = 7.02 m

s2
 giving vector �⃑�𝑎 =< −3.51,−6.08, 0 > m

s2
.

• Tension in the cable should be zero.

If you set 𝑚𝑚2 = 1 kg and 𝑚𝑚1 = 0 kg:

• Acceleration should have magnitude 𝑎𝑎 = 9.8 m
s2

 directed up the plane.

• Tension in the cable and friction should be zero.

If you set 𝑚𝑚1 = 1 kg and 𝜃𝜃 = 0°:

• Blocks should move whenever 𝑚𝑚2 > 0.5 kg.
• When 𝑚𝑚2 < 0.5 kg expect 𝑓𝑓 < 4.9 N.
• When 𝑚𝑚2 > 0.5 kg expect 𝑓𝑓 = 2.94 N.
• When 𝑚𝑚2 = 1 expect 𝑎𝑎 = 2.45 m

s2
 and 𝑇𝑇 = 7.35 N.

• As 𝑚𝑚2 → ∞ we expect 𝑎𝑎 → 𝑔𝑔 and 𝑇𝑇 → 12.74 N.

1 2

𝜃𝜃

6

6

OPTION 2: We expect 4 significant possible cases for the simulation. For choices of 𝐹𝐹 & 𝜃𝜃, only a subset of these
possible cases will occur. For example, for small 𝜃𝜃 case 4 will likely NOT occur.

Pay close attention to the subscripts when looking at the frictional force.
Note: 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜇𝜇𝑠𝑠𝑛𝑛 is never the actual friction force used in the simulation.
It is used to help determine the conditional statements in your code (if statements).
WATCH OUT! Normal force 𝑛𝑛 is not 𝑚𝑚𝑔𝑔 due to the component of 𝐹𝐹 perpendicular to the plane!

Conditional statement for friction direction?
Assume the ramp is frictionless to show the block slides up-plane if 𝐹𝐹 cos 𝜃𝜃 > 𝑚𝑚𝑔𝑔 sin𝜃𝜃.
This doesn’t tell us if Case 1 or Case 2 applies, but you know friction points down the
plane when 𝐹𝐹 cos 𝜃𝜃 > 𝑚𝑚𝑔𝑔 sin𝜃𝜃. Note: a vector pointing up the plane is given by

up_plane=vec(cos(theta),sin(theta),0)
Create an if statement in the code which assigns friction_direction correctly based on the condition.

Case 1: You push really hard on the block and it should slide up the ramp.
Any time 𝐹𝐹 cos 𝜃𝜃 > 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑔𝑔 sin 𝜃𝜃 the block slides up the plane.
Tip: determine 𝑛𝑛 and plug it into 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜇𝜇𝑠𝑠𝑛𝑛.
WATCH OUT! Notice 𝐹𝐹 sin𝜃𝜃 will appear in 𝑛𝑛!!!
Solve the inequality for 𝐹𝐹 to determine a conditional statement for your code!
Expect non-zero acceleration up the plane and use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.

Case 2: There is enough friction to prevent the block from sliding even though you push
pretty hard up the hill. In this case the component of �⃑�𝐹 parallel to the plane should
balance with the component of weight down the plane & friction down the plane. No
sliding should occur. We expect 𝑎𝑎 = 0 in this particular scenario. Note, because it is not
sliding, there is static friction between 𝑚𝑚 and the ramp.
WATCH OUT! It is not sliding: do not use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
It is not on the verge of slipping: do not use 𝑓𝑓 = 𝜇𝜇𝑠𝑠𝑛𝑛.
Get 𝑓𝑓 by solving for it in the force equation parallel to the plane!

Case 3: You push on the block but not that hard. Friction points up the plane and helps
keep the block in place. In this case the component of �⃑�𝐹 parallel to the plane should
balance with the component of weight down the plane & friction up the plane. No
sliding should occur. We expect 𝑎𝑎 = 0 in this particular scenario. Note, because it is
not sliding, there is static friction between 𝑚𝑚 and the ramp.
WATCH OUT! It is not sliding: do not use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
It is not on the verge of slipping: do not use 𝑓𝑓 = 𝜇𝜇𝑠𝑠𝑛𝑛.
Get 𝑓𝑓 by solving for it in the force equation parallel to the plane!

Case 4: You barely push on the block at all.
Any time 𝐹𝐹 cos 𝜃𝜃 + 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 < 𝑚𝑚𝑔𝑔 sin 𝜃𝜃 the block slides down the plane.
Tip: determine 𝑛𝑛 and plug it into 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜇𝜇𝑠𝑠𝑛𝑛.
WATCH OUT! Notice 𝐹𝐹 sin𝜃𝜃 will appear in 𝑛𝑛!!!
Solve the inequality for 𝐹𝐹 to determine a conditional statement for your code!
Expect non-zero acceleration up the plane and use 𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛.
Test cases with numbers on the next page…

𝑚𝑚

𝜃𝜃

𝐹𝐹 𝑎𝑎

𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛

𝑚𝑚

𝜃𝜃

𝐹𝐹 𝑎𝑎 = 0

𝑓𝑓 < 𝜇𝜇𝑠𝑠𝑛𝑛

𝑚𝑚

𝜃𝜃

𝐹𝐹 𝑎𝑎 = 0

𝑓𝑓 < 𝜇𝜇𝑠𝑠𝑛𝑛

𝑚𝑚

𝜃𝜃

𝐹𝐹
𝑎𝑎

𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛

𝑚𝑚

𝜃𝜃

7

7

Using 𝑚𝑚 = 1.00 kg, 𝜇𝜇𝑠𝑠 = 0.5, 𝜇𝜇𝑘𝑘 = 0.3, and 𝑔𝑔 = 9.8 m
s2

 one expects the following code
behavior. I was rounding all the time to get this done; expect errors in third digit.

𝜃𝜃 = 0°
&

𝐹𝐹 = 4.8 N

𝑛𝑛 = 9.8 N
𝑎𝑎 = 0

m
s2

𝑓𝑓 = 4.8 N

𝑛𝑛�⃑ =< 0, 9.8,0 > N
�⃑�𝑎 =< 0, 0,0 >

m
s2

𝑓𝑓 =< −4.8, 0,0 > N

𝜃𝜃 = 0°
&

𝐹𝐹 = 4.91 N

𝑛𝑛 = 9.8 N
𝑎𝑎 = 1.97

m
s2

𝑓𝑓 = 2.94 N

𝑛𝑛�⃑ =< 0, 9.8,0 > N
�⃑�𝑎 =< 1.97, 0,0 >

m
s2

𝑓𝑓 =< −2.94, 0,0 > N

𝜃𝜃 = 20°
&

𝐹𝐹 = 10 N

𝑛𝑛 = 12.63 N
𝑎𝑎 = 0

m
s2

𝑓𝑓 = 6.05 N

𝑛𝑛�⃑ =< −4.32, 11.87,0 > N
�⃑�𝑎 =< 0, 0,0 >

m
s2

𝑓𝑓 =< −5.69,−2.07,0 > N

𝜃𝜃 = 20°
&

𝐹𝐹 = 10.5 N

𝑛𝑛 = 12.80 N
𝑎𝑎 = 2.67

m
s2

𝑓𝑓 = 3.84 N

𝑛𝑛�⃑ =< −4.37, 12.03,0 > N
�⃑�𝑎 =< 2.51, 0.915,0 >

m
s2

𝑓𝑓 =< −3.61,−1.31,0 > N

𝜃𝜃 = 26.4°
&

𝐹𝐹 = 0 N

𝑛𝑛 = 8.78 N
𝑎𝑎 = 0

m
s2

𝑓𝑓 = 4.35 N

𝑛𝑛�⃑ =< −3.90, 7.86,0 > N
�⃑�𝑎 =< 0, 0,0 >

m
s2

𝑓𝑓 =< 3.90, 1.94,0 > N

𝜃𝜃 = 26.6°
&

𝐹𝐹 = 0 N

𝑛𝑛 = 8.77 N
𝑎𝑎 = 1.76

m
s2

𝑓𝑓 = 2.63 N

𝑛𝑛�⃑ =< −3.92, 7.84,0 > N
�⃑�𝑎 =< −1.57,−0.79,0 >

m
s2

𝑓𝑓 =< 2.35, 1.18,0 > N

𝜃𝜃 = 40°
&

𝐹𝐹 = 2.3 N

𝑛𝑛 = 8.99 N
𝑎𝑎 = 1.84

m
s2

𝑓𝑓 = 2.70 N

𝑛𝑛�⃑ =< −5.78, 6.89,0 > N
�⃑�𝑎 =< −1.41,−1.18,0 >

m
s2

𝑓𝑓 =< 2.07, 1.74,0 > N

𝜃𝜃 = 40°
&

𝐹𝐹 = 2.4 N

𝑛𝑛 = 9.05 N
𝑎𝑎 = 0

m
s2

𝑓𝑓 = 4.46 N

𝑛𝑛�⃑ =< −5.82, 6.93,0 > N
�⃑�𝑎 =< 0, 0,0 >

m
s2

𝑓𝑓 =< 3.42, 2.87,0 > N

𝜃𝜃 = 40°
&

𝐹𝐹 = 22.0 N

𝑛𝑛 = 21.6 N
𝑎𝑎 = 0

m
s2

𝑓𝑓 = 10.55 N

𝑛𝑛�⃑ =< −13.9, 16.6,0 > N
�⃑�𝑎 =< 0, 0,0 >

m
s2

𝑓𝑓 =< −8.08,−6.78,0 > N

𝜃𝜃 = 40°
&

𝐹𝐹 = 22.7 N

𝑛𝑛 = 22.1 N
𝑎𝑎 = 4.46

m
s2

𝑓𝑓 = 6.63 N

𝑛𝑛�⃑ =< −14.21, 16.93,0 > N
�⃑�𝑎 =< 3.42, 2.87,0 >

m
s2

𝑓𝑓 =< −5.07,−4.26,0 > N

If 𝜃𝜃 = 63.4° you should be able to accelerate upwards (but only if 𝐹𝐹 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻).

If 𝜃𝜃 > 63.5°, it should be impossible to make the block accelerate up the plane.

𝑚𝑚

𝜃𝜃

8

8

OPTION 3: With the system shown at right we expect 4 significant cases for the simulation.

Case 1: Any time 𝐹𝐹 sin𝜃𝜃 > (𝑚𝑚1 + 𝑚𝑚2)𝑔𝑔 your code should produce an error message. Think:
when this condition is met the vertical component of tension is larger than the total weight. The
blocks would lift off the table and start to twist. This is beyond the scope of our class during
Chapter 6 work. Note: partial lift-off can be avoided by connecting the string at the pink dot.

Case 2: There is enough friction to prevent the blocks from sliding even though you pull on them.
In this case the horizontal component of �⃑�𝐹 should balance with friction and no sliding should
occur. We expect 𝑎𝑎1 = 𝑎𝑎2 = 0 in this particular scenario. Note, because it is not sliding, no
friction is required between 𝑚𝑚1 & 𝑚𝑚2! There is static friction between 𝑚𝑚2 and the floor.
WATCH OUT! It is not sliding: do not use 𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 .
It is not on the verge of slipping: do not use 𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 𝜇𝜇𝑠𝑠𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 .
Get 𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 by solving for it using the system horizontal force equation.

Case 3: There is insufficient friction to prevent the 𝑚𝑚2 from sliding.
HOWEVER, there is sufficient friction to keep 𝑚𝑚1 moving in unison with 𝑚𝑚2.

We expect 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎 = 𝐹𝐹 cos𝜃𝜃−𝑓𝑓2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑚𝑚𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓

 in this particular scenario.

Friction between the floor and 𝑚𝑚2 is kinetic using 𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 .
WATCH OUT! Normal force 𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 is not 𝑚𝑚𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝𝑔𝑔 due to the vertical component of 𝐹𝐹!
WATCH OUT! Block 𝒎𝒎𝟏𝟏 is not sliding relative to 𝒎𝒎𝟐𝟐: do not use 𝑓𝑓12 = 𝜇𝜇𝑘𝑘 12𝑛𝑛12.
It is not on the verge of slipping: do not use 𝑓𝑓12 = 𝜇𝜇𝑠𝑠 12𝑛𝑛12.
Get 𝑓𝑓12 by solving for it using the horizontal force equation for block 𝑚𝑚1.
I haven’t thought this through completely, but perhaps this scenario can only occurs when 𝜇𝜇𝑠𝑠 12 > 𝜇𝜇𝑠𝑠 2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓???

Case 4: There is insufficient friction to prevent the 𝑚𝑚2 from sliding.
In addition, there is insufficient friction to keep 𝑚𝑚1 moving in unison with 𝑚𝑚2.

WATCH OUT! The system FBD is no longer valid so we can no longer use 𝑎𝑎 = 𝐹𝐹 cos𝜃𝜃−𝑓𝑓2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑚𝑚𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓

!

We use kinetic friction at both interfaces: 𝑓𝑓12 = 𝜇𝜇𝑘𝑘 12𝑛𝑛12 and 𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 .
WATCH OUT! Normal force 𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 is not 𝑚𝑚𝑡𝑡𝑝𝑝𝑡𝑡𝑚𝑚𝑝𝑝𝑔𝑔 due to the vertical component of 𝐹𝐹!
Do each FBD separately to get two force equations. Solve one for 𝑎𝑎1 and the other for 𝑎𝑎2.
We expect 𝑎𝑎1 < 𝑎𝑎2 when all is said and done.

Test cases with numbers on the next page…

2

1 𝐹𝐹

𝜃𝜃

2

1
𝐹𝐹

𝜃𝜃

2

1
𝐹𝐹

𝜃𝜃

𝑎𝑎1

𝑎𝑎2

2

1
𝐹𝐹

𝜃𝜃

𝑎𝑎1

𝑎𝑎2

9

9

I set my parameters to 𝑚𝑚1 = 1.00 kg, 𝑚𝑚2 = 4.00 kg, 𝜇𝜇𝑠𝑠12 = 0.7, 𝜇𝜇𝑘𝑘12 = 0.6, 𝜇𝜇𝑠𝑠2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 0.5,
𝜇𝜇𝑘𝑘2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 0.4, and 𝑔𝑔 = 9.8 m

s2
. With these values I expect the following code behavior. I was

rounding all the time to get this done; expect errors in third digit.

Expect lift-off error when 𝑇𝑇 > 143.3 N at 𝜃𝜃 = 20°.

Expect lift-off error when 𝑇𝑇 > 56.6 N at 𝜃𝜃 = 60°.

𝜃𝜃 = 0°
&

𝐹𝐹 = 24.0 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 49 N

𝑎𝑎1 = 𝑎𝑎2 = 0
m
s2

𝑓𝑓12 = 0 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 24.0 N

𝜃𝜃 = 0°
&

𝐹𝐹 = 24.6 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 49 N

𝑎𝑎1 = 𝑎𝑎2 = 1
m
s2

𝑓𝑓12 = 1 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 19.6 N

𝜃𝜃 = 0°
&

𝐹𝐹 = 34.2 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 49 N

𝑎𝑎1 = 𝑎𝑎2 = 2.92
m
s2

𝑓𝑓12 = 2.92 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 19.6 N

𝜃𝜃 = 0°
&

𝐹𝐹 = 53.8 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 49 N

𝑎𝑎1 = 𝑎𝑎2 = 6.84
m
s2

𝑓𝑓12 = 6.84 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 19.6 N

𝜃𝜃 = 0°
&

𝐹𝐹 = 54.0 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 49 N

𝑎𝑎1 = 5.88
m
s2

 & 𝑎𝑎2 = 7.13
m
s2

𝑓𝑓12 = 5.88 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 19.6 N

𝜃𝜃 = 15°
&

𝐹𝐹 = 50.2 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 36.0 N

𝑎𝑎1 = 𝑎𝑎2 = 6.82
m
s2

𝑓𝑓12 = 6.82 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 14.4 N

𝜃𝜃 = 15°
&

𝐹𝐹 = 50.5 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 35.9 N

𝑎𝑎1 = 5.88
m
s2

 & 𝑎𝑎2 = 7.13
m
s2

𝑓𝑓12 = 5.88 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 14.37 N

𝜃𝜃 = 10°
&

𝐹𝐹 = 20.0 N

𝑛𝑛2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 45.5 N

𝑎𝑎1 = 𝑎𝑎2 = 0
m
s2

𝑓𝑓12 = 0 N
𝑓𝑓2𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 = 19.7 N

2

1
𝐹𝐹

𝜃𝜃

𝑎𝑎1

𝑎𝑎2

