AFTER I GIVE THE SIGNAL TO BEGIN YOU CAN REMOVE THIS SHEET. DO NOT TURN IT IN!

162sp25t1c — Once the exam has officially started, remove the top sheet. The remaining sheets comprise your exam. It is each student's individual responsibility to ensure the instructor has received her or his completed exam. Any exams not received by the instructor earn zero points. Smart watches, phones, or other devices (except scientific calculators) are not permitted during the exam.

ints. Smart watches, phones, or of	ther devices (except scientific calcula	ators) are not permitted during the ex	am.
$1 \mathrm{kg} \cdot \frac{\mathrm{m}}{\mathrm{s}^2} = 1 \mathrm{N}$	1 N⋅m = 1 J	$1 \text{ Pa} = 1 \frac{\text{N}}{\text{m}^2}$	$1 W = 1 \frac{J}{s}$
$\Delta x = \frac{1}{2} a_x t^2 + v_{ix} t$	$v_x = \frac{dx}{dt}$	$a_x = \frac{dv_x}{dt}$	$v_{max} = \omega_0 x_{max}$
$\Sigma \vec{F} = m \vec{a}$	$\Sigma \vec{\tau} = I \vec{\alpha}$	$\mathcal{P} = \frac{dE}{dt}$	$a_{max} = \omega_0^2 x_{max}$
$\omega = 2\pi f = \frac{2\pi}{\mathbb{T}}$	$F_{spring} = k x $	$\omega_0 = \sqrt{\frac{k}{m}}$	$x(t) = A\cos(\omega_0 t + \phi)$
$-\omega_0^2 x = \ddot{x}$	$-\frac{\kappa}{I}\theta = \ddot{\theta}$	$-\frac{g}{L}\theta = \ddot{\theta}$	$-\frac{mgr_{CM}}{I_{pivot}}\theta = \ddot{\theta}$
$K = \frac{1}{2}mv^2$	$U = \frac{1}{2}kx^2$	$\sin \theta \approx \tan \theta \approx \theta$	$I_{\parallel axis} = I_{\rm CM} + md^2$
$\vec{F}_{drag} = -b\vec{v}$	$x(t) = Ae^{-bt/2m}\cos(\omega_d t + \phi)$	$\omega_d = \sqrt{\omega_0^2 - \left(\frac{b}{2m}\right)^2}$	$\vec{\tau} = \vec{r} \times \vec{F} \rightarrow rF \sin \theta + \text{R.H.R.}$
$\vec{F}_{driver} = F_0 \sin(\omega_{dr} t) \hat{\imath}$	$x(t) = A\cos(\omega_{dr}t + \phi)$	$A = \frac{F_0}{\sqrt{m^2(\omega_{dr}^2 - \omega_0^2)^2 + b^2 \omega_{dr}^2}}$	$x_{CM} = \frac{x_1 m_1 + x_2 m_2}{m_1 + m_2}$
$I_{disk} = \frac{1}{2}mR^2 \qquad I_{thin} = \frac{1}{1}$	$ \begin{array}{ccc} & b \\ & \vdots \\$	massless	$spherical = \frac{2}{3}mR^2$ shell
$I_{disk} = \frac{1}{4}mR^2$ $I_{thin} = \frac{1}{5}$	$\frac{b}{a}$ $I_{thin} = \frac{1}{12}m(b^2 + a^2)$	$I_{solid} = \frac{2}{5}mR^2 \qquad I_{thin} = r_{ring}$	$nR^2 \qquad I_{thick} = \frac{1}{2} m(R_i^2 + R_o^2)$
$y(x,t) = y(x \pm vt)$	$y(x,t) = A\sin(kx - \omega t + \phi)$	$k = \frac{2\pi}{\lambda}$	$v = f\lambda = \frac{\lambda}{\mathbb{T}} = \frac{\omega}{k}$
$\mu = \frac{m}{L}$	$v = \sqrt{\frac{F_{Tension}}{\mu}}$	$\mathcal{P}_{avg} = rac{1}{2} \mu v \omega^2 A^2$	$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \cdot \frac{\partial^2 y}{\partial t^2}$
$y_{total}(x,t) = y_1(x,t) + y_2(x,t) + \cdots$	$s(x,t) = s_{max} \cos(kx - \omega t)$	$\Delta P(x,t) = \Delta P_{max} \sin(kx - \omega t)$	$\Delta P_{max} = v_{sound} \rho \omega s_{max}$
$v_{sound} = \sqrt{\frac{Bulk\ Modulus}{density}}$	v_{sound} air $\approx 331.4 \frac{m}{s} + \left(0.61 \frac{m}{s \cdot {}^{\circ}C}\right) T_C$	$I = \frac{\mathcal{P}ower}{Area}$	$I = \frac{1}{2}\rho v\omega^2 s_{max}^2$
$\beta = 10 \text{ dB } \log_{10} \frac{I}{I_0}$	$I_0 = 10^{-12} \frac{W}{m^2}$	$\Delta r \approx d \sin \theta \text{ if } d \ll L$	$f_{beat} = f_1 - f_2 $
$\Delta r = r_1 - r_2 $	$\phi = \frac{\Delta r}{\lambda} 360^{\circ}$	$\Delta r_{des} = (odd \ integer) \frac{\lambda}{2}$	$\Delta r_{con} = (even integer) \frac{\lambda}{2}$
$f' = f_{source} \left(\frac{c \pm v_o}{c \mp v_s} \right)$	Use $+v_o$ if obs. towards source. Use $-v_s$ if source towards obs.	$\operatorname{Mach} \# = \frac{v_{source}}{v_{sound}} = \frac{1}{\sin \theta_{Mach}}$	$\sin(90^{\circ} - \theta) = \cos\theta$
$\Gamma = 10^{12}$ $G = 10^9$ $M = 10$	$k = 10^3$ $c = 10^{-2}$ $c = 10^{-2}$	= 10^{-3} $\mu = 10^{-6}$ $n = 10^{-9}$	$p = 10^{-12}$ $f = 10^{-15}$ $a =$

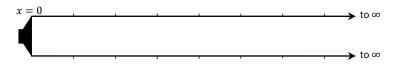
Name:	
orizontal level surface. mass. position (time $t = 0$).	Equilibrium position
	-www-
	<u>Initial</u>

A 424-gram mass slides with negligible friction across a horizontal level surface

The mass is connected to the wall by a spring of negligible mass

The mass is initially 235 mm to the left of the equilibrium position (time t=0)

The mass is initially moving to the right with speed $2.00 \frac{\text{m}}{\text{s}}$.

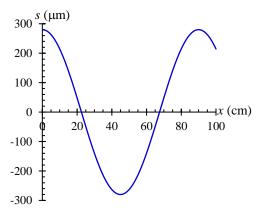

The period of oscillations is 1.700 s.

Intermediate rounding errors will cost you points!

- 1a) Determine angular frequency.
- 1b) Determine the spring constant.
- **1c) Determine the phase angle assuming $x(t) = x_{max} \cos(\omega_0 t + \phi)$.
- 1d) Determine the amplitude of oscillation.
- **1e) Determine position of the mass at t = 1.00 s (relative to the equilibrium position).

1a	
1b	
1c	
1d	
1e	

position



A sound wave propagates down an infinitely long pipe filled with air. The density of air inside the tube is $1.215 \times 10^{-3} \frac{g}{cm^3}$.

A plot of displacement versus position (for time t = 0) is shown.

The speed of sound in the tube is $348.1 \frac{\text{m}}{\text{s}}$.

- **2a) Determine wavenumber (physics definition, not chemistry's).
- **2b) Determine period.
- **2c) Determine the air temperature.
- 2d) Determine maximum overpressure in the tube.

2a	
2b	
2c	
2d	

3) On a day when the speed of sound is $343 \frac{m}{s}$, a supersonic plane has Mach angle 30.0°. If the plane slows down, what happens to the Mach angle? Circle the best answer.

Remains	Ingrassas	Dogranges	Impossible to determine
constant	Increases	Decreases	without more info

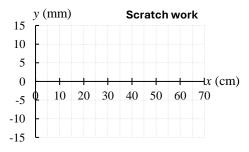
4a) A damped oscillator is governed by the differential equation

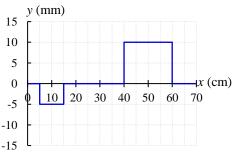
$$-kx - b\dot{x} = m\ddot{x}$$

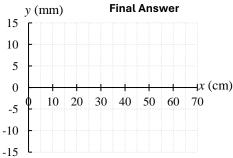
The mass is pulled some distance from equilibrium and released from rest at time t = 0. The damping constant b is *extremely* small. Which of the following best describes position of the oscillator as a function of time? Circle the best answer.

x(t) exponentially <i>decays</i> as it returns to the equilibrium position	x(t) oscillates with constant amplitude smaller than undamped oscillations	x(t) oscillates with gradually increasing amplitude	Impossible to
x(t) exponentially <i>grows</i> as it returns to the equilibrium position	x(t) oscillates with constant amplitude <i>larger</i> than undamped oscillations	x(t) oscillates with gradually decreasing amplitude	more information

4b) A horizontal mass-spring system is used to create a *damped*, *driven* oscillator with resonant frequency 999 Hz. This oscillator is driven at frequency 444 Hz. Which of the following should *decrease* the oscillation amplitude? Circle the best answer *or answers*.


Slightly decrease	Slightly decrease	Slightly decrease	None of the other actions
the spring constant	the mass	driving frequency	increase oscillation amplitude


Two transverse wave pulses on a string both travel to the right at $10 \frac{\text{cm}}{\text{s}}$. The right end of the string (at x = 70 cm) is fixed to a rigid support. Assume the figure at right shows the shape of the string at time t = 0.


5a) At what time will the centers of each pulse be at the same position?

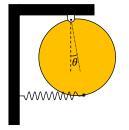
5b) Use the blank plot at right to sketch the shape of the string when the centers of each pulse overlap. The plot below is for scratch work.

A solid sphere (mass m & radius R) is connected to the ceiling with a frictionless pivot.

The bottom of the sphere is connected to the wall using a light spring (constant k).

The sphere is pulled to a small angle θ and released from rest.

Assume the spring force acts horizontally during small angle oscillations.


Air resistance is negligible.

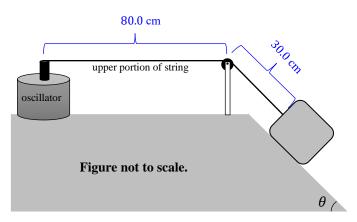
******6) Determine angular frequency of small angle oscillations. Assume $\theta < 10^{\circ}$.

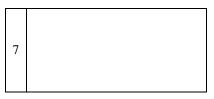
I may give partial credit for deriving the result if multiple correct steps of the process are shown.

If you incorrectly plug into a memorized formula, no partial credit is available.

Simplify your work such that no fractions appear in the denominator of your final result.

_		
6		


An oscillator is connected to a 1.000 kg mass on an inclined plane. Assume friction is negligible. The inclined plane is designed such that the angle θ shown in the figure can be adjusted.


The string connecting the oscillator to the mass on the inclined plane has mass 9.25 g. When the oscillator operates at 76.4 Hz, the angle of incline is adjusted until a standing wave with four antinodes is observed on the upper portion of the string.

Do not assume the figure is drawn to scale!

******7) Determine the angle of the incline.

I must be able to easily follow your work if you want partial credit.

A drone flies directly towards a stationary wall while emitting a tone at constant frequency.

The drone determines the echo from the wall is shifted by 8.50%.

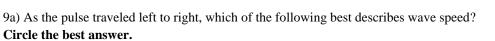
The speed of sound in air on this particular day is c.

8a) Is the frequency of the echo shifted up or down? Circle the best answer.

	No shift	Upwards	Downwards	Impossible to determine without more information	
--	----------	---------	-----------	--	--

****8b) Determine the speed of the drone.

Answer as a number with 3 sig figs times c.


8b

A cable with its left end $1.000\ m$ from the origin has linear mass density given by

$$\mu(x) = kx^6$$

The cable is 2.00 m long and is under $120\underline{0}$ N of tension. Figure not to scale.

A student observes a wave-pulse traveling from the left end to the right end in $0.500 \ s.$

Wave speed	Wave speed	Wave speed	Impossible to determine
was increasing	was constant	was increasing	without more info

9b) Determine the units appropriate for the constant k.

****9c) Determine a numerical value of the constant k (include the units).

9b	
9c	

*Extra Credit: Extra credit is worth almost nothing. Do this problem only after the rest of your test is complete and you've checked all your work, but you still have extra time. All work must be on this page & easy to follow.

Consider a horizontal mass spring system with negligible friction.

Suppose you know the initial position (x_i) , initial velocity (v_i) , and period (\mathbb{T}) .

You do NOT know the mass or the spring constant.

Is it possible to determine the amplitude of oscillations with this information alone?

IF YES, derive an algebraic expression for the amplitude of oscillations in terms of the known parameters.

IF NO, clearly explain why not & state what additional parameter (or parameters) is required to determine amplitude.

Page intentionally left blank as scratch paper.

If you use this as scratch, you are still expected to put your correct answer in the box.

Furthermore, add a note to the problem telling me to "look for scratch".

Page intentionally left blank as scratch paper.

If you use this as scratch, you are still expected to put your correct answer in the box.

Furthermore, add a note to the problem telling me to "look for scratch".