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Version A 

1a) Determine mass using density.  WATCH OUT! Notice, as often occurs in real life, we have mixed prefixes… 
For me it seemed easiest to convert the diameter of    4.44 mm →   0.444 cm  . 

𝜌𝜌 =
𝑚𝑚
𝑉𝑉

       →        𝑚𝑚 = 𝜌𝜌𝜌𝜌 = 𝜌𝜌 �
𝜋𝜋
4
𝑑𝑑2𝐿𝐿� = 5.55

g
cm3 �

𝜋𝜋
4

(0.444 cm)2(77.7 cm)� = 𝟔𝟔𝟔𝟔.𝟕𝟕𝟕𝟕 g 

 
1b) Heat relates to specific heat using 

𝑄𝑄 = 𝑚𝑚𝑚𝑚Δ𝑇𝑇 

𝑐𝑐 =
𝑄𝑄

𝑚𝑚Δ𝑇𝑇
 

WATCH OUT!  It is reasonable to write the answer in the units provided in the equation sheet � J
kg∙K

�. 

This implies we should use mass in kg and heat in J.  Fortunately, Δ𝑇𝑇 = 79.9 ℃ = 79.9 K. 

𝑐𝑐 =
6.66 × 103 J

�0.06677 kg�(77.9 K)
 

𝒄𝒄 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝐉𝐉

𝐤𝐤𝐤𝐤 ∙ 𝐊𝐊
 

 
1c) WATCH OUT! Notice, as often occurs in real life, we have mixed prefixes… 

Δ𝐿𝐿 = 𝐿𝐿0𝛼𝛼Δ𝑇𝑇 

𝛼𝛼 =
Δ𝐿𝐿
𝐿𝐿0Δ𝑇𝑇

 

𝛼𝛼 =
0.888 × 10−3 m

(0.777 m)(79.9 ℃) 

𝛼𝛼 = 1.430 × 10−5
1
℃

 

In more standard units we write 

𝜶𝜶 = 𝟏𝟏𝟏𝟏.𝟑𝟑𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟔𝟔
𝟏𝟏
℃
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2a) Heat generally flows from hot to cold. 
There can be exceptions for systems with very small numbers of molecules. 
In this problem, heat flows to the right. 

2b) In steady state, the heat travelling trough the rod 1 (per unit 
time) must equal heat flowing through rod 2 (per unit time).   
If this were not the case, energy would build up at the junction (eventually 
melting the rods at the junction).  This does not happen in the real world. 

Therefore, in steady state: 
𝒫𝒫1 = 𝒫𝒫2 

𝑘𝑘1𝐴𝐴1Δ𝑇𝑇1
𝐿𝐿1

=
𝑘𝑘2𝐴𝐴2Δ𝑇𝑇2

𝐿𝐿2
 

The rods have equal areas…cancel area from each side of the equation. 
𝑘𝑘1Δ𝑇𝑇1
𝐿𝐿1

=
𝑘𝑘2Δ𝑇𝑇2
𝐿𝐿2

 

Notice this implies 

Δ𝑇𝑇1 =
𝑘𝑘2𝐿𝐿1
𝑘𝑘1𝐿𝐿2

Δ𝑇𝑇2 

At this stage many of you tried to use something like the following 

𝑇𝑇ℎ𝑜𝑜𝑜𝑜 − 𝑇𝑇𝐽𝐽 =
𝑘𝑘2𝐿𝐿1
𝑘𝑘1𝐿𝐿2

�𝑇𝑇𝐽𝐽 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 

Think: to have equal power, the power equations must have the same sign.  Think carefully about how you compute Δ𝑇𝑇’s!  Many of you lost 
points because you computed Δ𝑇𝑇 with an incorrect sign. 
 
Notice I am using subscript 1 for copper and subscript 2 for steel.  To save time I will plug in numbers now… 

Δ𝑇𝑇1 =
�50 W

m ∙ K� (0.200 m)

�400 W
m ∙ K� (0.100 m)

Δ𝑇𝑇2 = 0.25Δ𝑇𝑇2 

 
Now relate the temperature difference across each rod to total temperature difference between the reservoirs. 

Δ𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Δ𝑇𝑇1 + Δ𝑇𝑇2 

Δ𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.25Δ𝑇𝑇2 + Δ𝑇𝑇2 

Δ𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1.25Δ𝑇𝑇2 

Δ𝑇𝑇2 =
1

1.25
Δ𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

Δ𝑇𝑇2 =
1

1.25
[66.6 ℃− (−22.2 ℃)]  

Δ𝑇𝑇2 = 71. 04 ℃ 
This tells us the temperature of the junction is 71. 04 ℃ larger than the cold reservoir. 

𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 48. 84 ℃ 
  

Figure not to scale. 

𝑇𝑇ℎ𝑜𝑜𝑜𝑜 = 66.6 ℃ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −22.2 ℃ 

𝑇𝑇 =? 

copper steel 

𝐿𝐿1 
0.200 m 

𝐿𝐿2 
0.100 m 
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2b) To get diameter, know cross-sectional area of a cylinder is 𝜋𝜋𝑟𝑟2 = 𝜋𝜋
4
𝑑𝑑2 and 𝒫𝒫 = 𝑄𝑄

Δ𝑡𝑡
.  Convert time to seconds. 

𝒫𝒫2 =
𝑘𝑘2𝐴𝐴2Δ𝑇𝑇2

𝐿𝐿2
 

𝜋𝜋
4
𝑑𝑑2 =

𝐿𝐿2𝑄𝑄
𝑘𝑘2Δ𝑇𝑇2Δ𝑡𝑡

 

𝑑𝑑 = �
4𝐿𝐿2𝑄𝑄

𝜋𝜋𝑘𝑘2Δ𝑇𝑇2Δ𝑡𝑡
 

𝑑𝑑 = �
4(0.100 m)(555 J)

𝜋𝜋 �50 W
m ∙ K� �71. 04 ℃�(900 s)

 

𝒅𝒅 = 𝟒𝟒.𝟕𝟕𝟕𝟕 mm 
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3a) In this question there is no real need to specify if I mean power emitted or NET power emitted (see extra credit 
question 1).  That said, probably wise to specify if you mean power emitted or NET power emitted when you do 
these kinds of calculations.  I will compute NET power radiated. 

𝒫𝒫𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒�𝑇𝑇4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � 

𝒫𝒫𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎4𝜋𝜋𝑟𝑟2𝑒𝑒�𝑇𝑇4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � 

𝒫𝒫𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎𝜋𝜋𝑑𝑑2𝑒𝑒�𝑇𝑇4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � 
WATCH OUT!  This equation does not use Δ𝑇𝑇!  In particular �𝑇𝑇4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 � ≠ Δ𝑇𝑇4. 
This implies we must use the Kelvin scale for temperature! 
Notice I also converted the diameter to meters and looked up the emissivity on the exam equation sheet. 

𝒫𝒫𝑁𝑁𝑁𝑁𝑁𝑁 = �5.67 × 10−8
W

m2 ∙ K4� 𝜋𝜋(0.0750 m)2(0.61) ��1193. 15 K�4 − �293. 15 K�4� 

𝒫𝒫𝑁𝑁𝑁𝑁𝑁𝑁 = 1234 W 
 
3b) We know power and time.  This will give us a decent estimate for heat.  Notice: 𝑄𝑄 is negative when cooling… 

𝒫𝒫 =
𝑄𝑄
Δ𝑡𝑡

      →         𝑄𝑄 = −𝒫𝒫Δ𝑡𝑡 = −�1234.2 W�(0.333 s) = −411.0 J 

Now use this equation in  
𝑄𝑄 = 𝑚𝑚𝑚𝑚Δ𝑇𝑇 

Δ𝑇𝑇 =
𝑄𝑄
𝑚𝑚𝑚𝑚

 

Δ𝑇𝑇 =
−411.0 J

(1.875 kg) �380 J
kg ∙ K�

 

𝚫𝚫𝑻𝑻 = −𝟎𝟎.𝟓𝟓𝟕𝟕𝟕𝟕 ℃ 
Think: this estimate assumed power was radiated at constant rate. 
Strictly speaking, this assumption is invalid when temperature is changing. 
HOWEVER, because our time interval is so short, the change in temperature is quite small. 
Our assumption of constant rate of power radiated is really quite good. 
 
To get a feeling for the quality of this approximation 
I recomputed power radiated using Δ𝑇𝑇 to estimate the average temp 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = �1193. 15 K − 1

2
0.577 K� = 1192. 9 K. 

I found Δ𝑇𝑇 = −0.576 ℃. 
Because our emissivity has only 2 sig figs, this result has not even changed in the rounding digit! 
Furthermore, corrections due to convection and conduction are probably significantly larger than errors associated 
with our constant temperature assumption. 
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4) We are asked to the average value of 𝑣𝑣3 for the Maxwell-Boltzmann speed distribution. 
Because no dimensionality was specifically mentioned, use the default (3D) Maxwell-Boltzmann distribution: 

𝑓𝑓(𝑣𝑣) = �
𝑚𝑚 

2𝝅𝝅𝑘𝑘𝐵𝐵𝑇𝑇
�
3/2

exp�−
𝑚𝑚𝑣𝑣2

2𝑘𝑘𝐵𝐵𝑇𝑇
�  4𝜋𝜋𝑣𝑣2 

Use our standard procedure we have seen several times now: 

𝑣𝑣3 = � 𝑣𝑣3  �
𝑚𝑚 

2𝝅𝝅𝑘𝑘𝐵𝐵𝑇𝑇
�
3/2

exp�−
𝑚𝑚𝑣𝑣2

2𝑘𝑘𝐵𝐵𝑇𝑇
�  4𝜋𝜋𝑣𝑣2 𝑑𝑑𝑑𝑑

∞

0
 

𝑣𝑣3 = 4𝜋𝜋 �
𝑎𝑎 
𝝅𝝅
�
3/2

� 𝑣𝑣5  exp(−𝑎𝑎𝑣𝑣2)  𝑑𝑑𝑑𝑑
∞

0
 

Identify we should use integral 

𝐼𝐼5 = � 𝑥𝑥5𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑 =
1
𝑎𝑎3

∞

0
     where   𝑎𝑎 =

𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇

 

𝑣𝑣3 = 4𝜋𝜋 �
𝑎𝑎 
𝝅𝝅
�
3/2 1

𝑎𝑎3
 

If you stopped here, you lost points. 
It is unreasonable for students to leave a result in un-simplified form! 
You were also told on the exam page to simplify your result. 

𝑣𝑣3 =
4

𝜋𝜋1/2𝑎𝑎3/2 

𝑣𝑣3 =
4

√𝜋𝜋𝑎𝑎3
 

If you stopped here, you lost points. 
It is standard form to write final answers in terms 𝑚𝑚, 𝑘𝑘𝐵𝐵, & 𝑇𝑇. 

𝑣𝑣3 =
4

�𝜋𝜋 � 𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇

�
3

= 4�
23𝑘𝑘𝐵𝐵3𝑇𝑇3

𝜋𝜋𝑚𝑚3  

If you stopped here, you lost points. 
It is standard form to write this final answer as a single fraction under the radical. 

𝒗𝒗𝟑𝟑 = �𝟏𝟏𝟏𝟏𝟏𝟏𝒌𝒌𝑩𝑩
𝟑𝟑𝑻𝑻𝟑𝟑

𝝅𝝅𝒎𝒎𝟑𝟑  

In most engineering applications the 128 & 𝜋𝜋 would be computed as a decimal and brought outside the root. 

𝒗𝒗𝟑𝟑 ≈ 𝟔𝟔.𝟑𝟑𝟑𝟑�
𝒌𝒌𝑩𝑩𝟑𝟑𝑻𝑻𝟑𝟑

𝒎𝒎𝟑𝟑 = 𝟔𝟔.𝟑𝟑𝟑𝟑�
𝒌𝒌𝑩𝑩𝑻𝑻
𝒎𝒎

�
𝟑𝟑
𝟐𝟐
 

 
I’ll accept any of these last forms as they all seem pretty clean and easy for a reader to use. 
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5a) Answer: REMAIN CONSTANT 
During any isothermal process, temperature remains constant. 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 = 0 
 
5b) Answer: POSITIVE 
We are told it is an expansion process. 
For an expansion process �𝑉𝑉𝑓𝑓 > 𝑉𝑉𝑖𝑖�, we know 𝑊𝑊𝑏𝑏𝑏𝑏 should be positive. 
Alternatively, consider  

𝑊𝑊 𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= 𝑛𝑛𝑛𝑛𝑛𝑛 ln
𝑉𝑉𝑓𝑓
𝑉𝑉𝑖𝑖

 

Notice the ln  term is positive whenever 𝑉𝑉𝑓𝑓 > 𝑉𝑉𝑖𝑖 and negative whenever 𝑉𝑉𝑖𝑖 > 𝑉𝑉𝑓𝑓. 
 
5c) Answer: POSITIVE 
To understand heat, I will write down the first law then think about 𝑊𝑊𝑏𝑏𝑏𝑏. 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖 −𝑊𝑊𝑏𝑏𝑏𝑏 
For an isothermal process, we already know Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 0.  This implies: 

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑏𝑏𝑏𝑏 
Since we already determined 𝑊𝑊𝑏𝑏𝑏𝑏 is positive, we now know 𝑄𝑄𝑖𝑖𝑖𝑖 must also be positive. 
 
5d) Answer: POSITIVE  
Entropy change is given by 

Δ𝑆𝑆 = �
𝑑𝑑𝑑𝑑
𝑇𝑇

 

For an isothermal process, temperature is constant and we can factor that out of the integral. 

Δ𝑆𝑆 =
1
𝑇𝑇
�𝑑𝑑𝑑𝑑 =

𝑄𝑄
𝑇𝑇

 

Since 𝑄𝑄 & 𝑇𝑇 are both positive, entropy change is also positive. 
Probably didn’t need to do the entire integral to see that, but it is good practice. 
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6) To derive work for a process, get an expression for 𝑃𝑃 in terms of 𝑉𝑉. 
In this case, the problem statement gave it to us as 𝑃𝑃 = 𝛼𝛼𝑉𝑉2. 

𝑊𝑊𝑏𝑏𝑏𝑏 = � 𝑃𝑃 𝑑𝑑𝑑𝑑
𝑓𝑓

𝑖𝑖
 

𝑊𝑊𝑏𝑏𝑏𝑏 = � 𝛼𝛼𝑉𝑉2 𝑑𝑑𝑑𝑑
𝑓𝑓

𝑖𝑖
 

𝑊𝑊𝑏𝑏𝑏𝑏 =
𝛼𝛼
3
𝑉𝑉3 

𝑊𝑊𝑏𝑏𝑏𝑏 =
𝛼𝛼
3
�𝑉𝑉𝑓𝑓3 − 𝑉𝑉𝑖𝑖3� 

If you stopped here, I gave you 2 points out of 3. 
This is pretty good, but we should go one step further.  Once we are finished you will see why. 
Furthermore, the problem statement asked to write this in terms of 𝑃𝑃𝑖𝑖 ,𝑉𝑉𝑖𝑖 ,𝑃𝑃𝑓𝑓 , & 𝑉𝑉𝑓𝑓.   
The trick is to rewrite the constant in two ways. 
This is exactly the same trick used in the derivation of work done by the gas for an adiabatic process. 

𝛼𝛼 =
𝑃𝑃
𝑉𝑉2

=
𝑃𝑃𝑖𝑖
𝑉𝑉𝑖𝑖2

=
𝑃𝑃𝑓𝑓
𝑉𝑉𝑓𝑓2

 

𝑊𝑊𝑏𝑏𝑏𝑏 =
𝛼𝛼
3
𝑉𝑉𝑓𝑓3 −

𝛼𝛼
3
𝑉𝑉𝑖𝑖3 

𝑊𝑊𝑏𝑏𝑏𝑏 =
1
3
�
𝑃𝑃𝑓𝑓
𝑉𝑉𝑓𝑓2
�𝑉𝑉𝑓𝑓3 −

1
3
�
𝑃𝑃𝑖𝑖
𝑉𝑉𝑖𝑖2
� 𝑉𝑉𝑖𝑖3 

𝑊𝑊𝑏𝑏𝑏𝑏 =
1
3
𝑃𝑃𝑓𝑓𝑉𝑉𝑓𝑓 −

1
3
𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖 

𝑾𝑾𝒃𝒃𝒃𝒃 =
𝟏𝟏
𝟑𝟑
�𝑷𝑷𝒇𝒇𝑽𝑽𝒇𝒇 − 𝑷𝑷𝒊𝒊𝑽𝑽𝒊𝒊� 

Think: if you had to use this equation after getting numbers form a 𝑃𝑃𝑃𝑃 diagram, isn’t this last form MUCH nicer? 
 
Side note: many of you tried to use 𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛.  While this is true for all gases in our classes, it isn’t useful in this 
unusual process.  We were told 𝑃𝑃 = 𝛼𝛼𝑉𝑉2 was constant.  Notice this necessarily implies 

𝛼𝛼𝑉𝑉3 = 𝑛𝑛𝑛𝑛𝑛𝑛 
Clearly temperature is NOT constant as the volume changes for this process. 
Converting 𝑃𝑃 using the ideal gas law does not make positive progress in terms of solving the integral. 
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The cycle starts at point 𝟏𝟏 and runs clockwise.  Note: 𝑷𝑷𝟏𝟏 = 𝟔𝟔𝟔𝟔𝟔𝟔 𝐤𝐤𝐤𝐤𝐤𝐤…not 600.   
Temperature at point 𝟐𝟐 is 650.2 K.  Work is done by the gas during every cycle. 

7a) Use 𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛 on point 2.  Include units! 

7b) Notice process 1  2 is not isothermal!   

𝑃𝑃1𝑉𝑉1
𝑃𝑃2𝑉𝑉2

=
𝑛𝑛𝑛𝑛𝑇𝑇1
𝑛𝑛𝑛𝑛𝑇𝑇2

   →    𝑇𝑇1 =
𝑃𝑃1𝑉𝑉1
𝑃𝑃2𝑉𝑉2

𝑇𝑇2 

7c) Determine the best value to use for 
degrees of freedom based off discussions in 
class & homework. 
 
 
In big chart, first fill in any known zeros. 
Then fill in using the equation sheet for 𝑊𝑊𝑏𝑏𝑏𝑏 or 𝑄𝑄𝑖𝑖𝑖𝑖 as needed.  Recall one can always use Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 
One can always use the first law for any row: Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖 −𝑊𝑊𝑏𝑏𝑏𝑏.  

7a 𝑛𝑛 = 0.03330 mol 

7b 
𝑇𝑇1 = 1085.5 K 

 
𝑇𝑇3 = 180. 61 K 

7c 

𝒇𝒇 = 𝟓𝟓    →    𝛾𝛾 = 1.4 

𝐶𝐶𝑉𝑉 =
5
2
𝑅𝑅 ≈ 20.785

J
mol ∙ K

 

𝐶𝐶𝑃𝑃 =
7
2
𝑅𝑅 ≈ 29.099

J
mol ∙ K

 

 Process Name 𝑄𝑄𝑖𝑖𝑖𝑖 (J) 𝑊𝑊𝒃𝒃𝒃𝒃 𝒈𝒈𝒈𝒈𝒈𝒈 (J) Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  (J) 

1  2 
Adiabatic 

Verify 
𝑃𝑃1𝑉𝑉1

𝛾𝛾 = 227. 74 
𝑃𝑃2𝑉𝑉2

𝛾𝛾 = 227. 71 

0 𝑊𝑊𝑏𝑏𝑏𝑏 =
1

1 − 𝛾𝛾
�𝑃𝑃𝑓𝑓𝑉𝑉𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖� 

𝟑𝟑𝟑𝟑𝟏𝟏.𝟐𝟐𝟐𝟐 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 
−𝟑𝟑𝟑𝟑𝟏𝟏.𝟐𝟐𝟐𝟐 

Verified using 1st Law 

2  3 Isobaric 𝑄𝑄 = 𝑛𝑛𝐶𝐶𝑃𝑃Δ𝑇𝑇 =
𝑓𝑓 + 2

2
𝑛𝑛𝑛𝑛Δ𝑇𝑇 

−𝟒𝟒𝟒𝟒𝟓𝟓.𝟎𝟎 

𝑊𝑊𝑏𝑏𝑏𝑏 = 𝑃𝑃Δ𝑉𝑉 
−𝟏𝟏𝟏𝟏𝟎𝟎.𝟎𝟎 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 
−𝟑𝟑𝟑𝟑𝟓𝟓.𝟎𝟎 

Verified using 1st Law 

3  1 Isochoric 𝑄𝑄 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 =
𝑓𝑓
2
𝑛𝑛𝑛𝑛Δ𝑇𝑇 

+𝟔𝟔𝟔𝟔𝟔𝟔.𝟑𝟑 
0 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 
+𝟔𝟔𝟔𝟔𝟔𝟔.𝟑𝟑 

Verified using 1st Law 

For the Entire Cycle 
Sum the entries in this column 

+𝟏𝟏𝟏𝟏𝟏𝟏.𝟑𝟑 
Sum the entries in this column 

+𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐 
0 

Verified using 1st Law 

0
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𝟏𝟏

𝟐𝟐𝟑𝟑

COLD Reservoir 
 

HOT Reservoir 

heat 
engine 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 = 𝟏𝟏 −
|𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄|
𝑸𝑸𝑯𝑯𝑯𝑯𝑯𝑯

= 𝟐𝟐𝟐𝟐.𝟑𝟑𝟓𝟓% 

The upper arrow uses 𝑄𝑄ℎ𝑜𝑜𝑜𝑜 = sum all 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑄𝑄𝑖𝑖𝑖𝑖′ 𝑠𝑠 = 𝟔𝟔𝟔𝟔𝟔𝟔.𝟑𝟑 J 

The lower arrow uses |𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| = |sum all 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑄𝑄𝑖𝑖𝑖𝑖′ 𝑠𝑠| = 𝟒𝟒𝟒𝟒𝟓𝟓.𝟎𝟎 J 

The middle arrow uses 𝑊𝑊𝑁𝑁𝑁𝑁𝑁𝑁 = +𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐 J 

𝑸𝑸𝑯𝑯 = 𝟔𝟔𝟔𝟔𝟔𝟔.𝟑𝟑 J 

|𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄| = 𝟒𝟒𝟒𝟒𝟓𝟓.𝟎𝟎 J 

𝑾𝑾𝑵𝑵𝑵𝑵𝑵𝑵 = +𝟏𝟏𝟏𝟏𝟏𝟏.𝟐𝟐𝟐𝟐 J 



Version A 

EC1: Consider the equations 
Radiative Emission Radiative Absorption NET Radiation = Emission-Absorption 
𝒫𝒫𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝜎𝜎𝜎𝜎𝑇𝑇4 𝒫𝒫𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝜎𝜎𝜎𝜎𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4  𝒫𝒫𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎𝜎𝜎𝜎𝜎(𝑇𝑇4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4 ) 

 
If we assume absorption is a 1% correction: 

0.01𝒫𝒫𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 > 𝒫𝒫𝑎𝑎𝑎𝑎𝑎𝑎 

0.01𝜎𝜎𝜎𝜎𝜎𝜎𝑇𝑇4 > 𝜎𝜎𝜎𝜎𝜎𝜎𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4  

0.01𝑇𝑇4 > 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4  

  𝑇𝑇 > 3.16𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒  
If we set 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 293 K, the absorption term is negligible whenever temperatures exceed 

𝑇𝑇 ≈ 926 K = 633 ℃ 
The situation in problem 3 far exceeds this minimum temperature. 
 
Furthermore, the sphere’s weight is necessarily supported by something (e.g. a wire mesh cooling rack). 
Conduction of heat directly into this cooling rack is a larger correction than ignoring absorption from the room at 
these high temperatures.  Similarly, convection currents generated in the air immediately surrounding the sphere 
likely play a larger role than ignoring absorption from the room. 
 
  



Version A 

EC2: The approximate result is found using the average temperature of the sphere as it cools to compute power. 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 =
1193. 15 K + (273.15 + 50.0) K

2
= 758. 15 K 

𝒫𝒫𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 = �5.67 × 10−8
W

m2 ∙ K4� 𝜋𝜋(0.0750 m)2(0.61) ��758. 15 K�4 − �293. 15 K�4� 

𝒫𝒫𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 = 197.4 W 
The heat required to cool all the way down to 50.0 ℃ is 

𝑄𝑄 = 𝑚𝑚𝑚𝑚Δ𝑇𝑇 = (1.875 kg) �380
J

kg ∙ K
� �1193. 15 K − 323.15 K� = 6.199 × 105 J 

This gives 

Δ𝑡𝑡 ≈
𝑄𝑄

𝒫𝒫𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁
= 3. 14 × 103 s ≈ 0.87 hr 

 
I will ignore units while deriving the exact result found using 

𝒫𝒫 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝒫𝒫 𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 

(5.67 × 10−8)𝜋𝜋(0.0750 )2(0.61)[𝑇𝑇4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4 ]𝑑𝑑𝑑𝑑 = (1.875)(380) 𝑑𝑑𝑑𝑑 

6.112 × 10−10(𝑇𝑇4 − 7.385 × 109) 𝑑𝑑𝑑𝑑 = 712.5 𝑑𝑑𝑑𝑑 

 𝑑𝑑𝑑𝑑 =
712.5

6.112 × 10−10(𝑇𝑇4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4 )  𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑 =
1.1657 × 1012 𝑑𝑑𝑑𝑑

𝑇𝑇4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4
  

You could approach this integral using partial fractions 

𝑑𝑑𝑑𝑑 =
1.1657 𝑑𝑑𝑑𝑑
𝑇𝑇4 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒4

= 1.1657
1

(𝑇𝑇2 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒2 )(𝑇𝑇2 + 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒2 )  𝑑𝑑𝑑𝑑 = 1.1657
1

(𝑇𝑇 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒)(𝑇𝑇 + 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒)(𝑇𝑇2 + 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒2 )  𝑑𝑑𝑑𝑑 

 
I’m going to use Wolfram Alpha since I doubt anyone actually 
tries partial fractions and succeeds. 

Δ𝑡𝑡 ≈
𝑄𝑄

𝒫𝒫𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁
= 17690 s ≈ 4.91 hr 

This result seems a lot more plausible. 
The initial cooling happens quickly (𝒫𝒫𝑖𝑖 ≈ 1234 W). 
However, as the sphere asymptotically cools to the final 
temperature, the rate of cooling drops dramatically. 
For example, once the sphere reaches 100 ℃ = 373 K the cooling 
rate drops to 𝒫𝒫 ≈ 7.37 W.  
 
 
 
 
When one considers conduction and convection, the actual result probably lies somewhere between these two 
results.  I would wait several hours before trying to pick up that sphere.  
 
  



Version A 

EC3: Consider the equations in the chart.  Note: 𝑇𝑇ℎ𝑜𝑜𝑜𝑜 = 𝑇𝑇1 and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇3. 

 

𝑄𝑄ℎ𝑜𝑜𝑜𝑜 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 =
𝑓𝑓
2
𝑛𝑛𝑛𝑛Δ𝑇𝑇 =

𝑓𝑓
2

(𝑃𝑃1𝑉𝑉1 − 𝑃𝑃3𝑉𝑉3) =
𝑓𝑓
2

(𝑃𝑃1 − 𝑃𝑃3)𝑉𝑉3 

|𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| = |𝑛𝑛𝐶𝐶𝑃𝑃Δ𝑇𝑇| = �
𝑓𝑓 + 2

2
𝑛𝑛𝑛𝑛Δ𝑇𝑇� = �

𝑓𝑓 + 2
2

(𝑃𝑃3𝑉𝑉3 − 𝑃𝑃2𝑉𝑉2)� = �
𝑓𝑓 + 2

2
𝑃𝑃3(𝑉𝑉3 − 𝑉𝑉2)� =

𝑓𝑓 + 2
2

𝑃𝑃3(𝑉𝑉2 − 𝑉𝑉3) 

𝜂𝜂 = 1 −
|𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|
𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻

 

𝜂𝜂 = 1 −
𝑓𝑓 + 2

2 𝑃𝑃3(𝑉𝑉2 − 𝑉𝑉3)
𝑓𝑓
2 (𝑃𝑃1 − 𝑃𝑃3)𝑉𝑉3

 

𝜂𝜂 = 1 −
𝑓𝑓 + 2
𝑓𝑓

∙
𝑃𝑃3(𝑉𝑉2 − 𝑉𝑉3)
(𝑃𝑃1 − 𝑃𝑃3)𝑉𝑉3

 

𝜂𝜂 = 1 − 𝛾𝛾 ∙
   𝑉𝑉2𝑉𝑉3

− 𝑉𝑉3
𝑉𝑉3

   

𝑃𝑃1
𝑃𝑃3
− 𝑃𝑃3
𝑃𝑃3

 

𝜂𝜂 = 1 − 𝛾𝛾 ∙
   𝑉𝑉2𝑉𝑉3

− 1   

𝑃𝑃1
𝑃𝑃3
− 1

 

 
𝑉𝑉2
𝑉𝑉3

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑐𝑐  

Using the ideal gas law for the isochoric process gives: 
𝑃𝑃1𝑉𝑉1
𝑃𝑃3𝑉𝑉3

=
𝑛𝑛𝑛𝑛𝑇𝑇1
𝑛𝑛𝑛𝑛𝑇𝑇3

    →    
𝑃𝑃1
𝑃𝑃3

=
𝑇𝑇1
𝑇𝑇3

=
𝑇𝑇ℎ𝑜𝑜𝑜𝑜
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

𝜼𝜼 = 𝟏𝟏 − 𝜸𝜸 ∙
   𝒓𝒓𝒄𝒄 − 𝟏𝟏   
𝑻𝑻𝒉𝒉𝒉𝒉𝒉𝒉
𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

− 𝟏𝟏
 

We could probably write this in other forms, but this seems like a useful set of parameters to use. 
 

 

 Process Name 𝑄𝑄𝑖𝑖𝑖𝑖 (J) 𝑊𝑊𝒃𝒃𝒃𝒃 𝒈𝒈𝒈𝒈𝒈𝒈 (J) Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  (J) 

1  2 Adiabatic 0 𝑊𝑊𝑏𝑏𝑏𝑏 =
1

1 − 𝛾𝛾
�𝑃𝑃𝑓𝑓𝑉𝑉𝑓𝑓 − 𝑃𝑃𝑖𝑖𝑉𝑉𝑖𝑖� Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 

2  3 Isobaric 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝐶𝐶𝑃𝑃Δ𝑇𝑇 < 0 𝑊𝑊𝑏𝑏𝑏𝑏 = 𝑃𝑃Δ𝑉𝑉 Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 

3  1 Isochoric 𝑄𝑄ℎ𝑜𝑜𝑜𝑜 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 > 0 0 Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝐶𝐶𝑉𝑉Δ𝑇𝑇 


