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Version A, White 

1a) The Planck model matches up well. 
 
1b) I’m expecting something that mentions the break-down of the Rayliegh-Jeans prediction at short wavelengths. 
Screen shot of what you’ll find with Wikipedia: 

 
1c) I’m expecting something about quantized energy levels. 
From the workbook page 67: 

Planck’s 
Hypothesis 

A black body is made up of atomic oscillators. 
1) The energy of each oscillator can only take on certain 

discrete (quantized) energy levels. 

𝐸𝐸𝑛𝑛 = 𝑛𝑛𝑡𝑡ℎ energy level = 𝑛𝑛ℎ𝑓𝑓 

ℎ = 6.626 × 10−34 𝐽𝐽 ∙ s 

2) The oscillators absorb/emit radiation during a transition from an initial state (𝑛𝑛𝑖𝑖) to a 
final state �𝑛𝑛𝑓𝑓�.  In the figure at right 𝑛𝑛𝑖𝑖 = 3,𝑛𝑛𝑓𝑓 = 1, & Δ𝐸𝐸 = 2ℎ𝑓𝑓.  Notice this transition 
to a lower energy causes a photon of energy 2ℎ𝑓𝑓 to be emitted by the oscillator. 

From an AI bot during a web search with the Brave browser: 
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2a) Unless you require many sig figs, it is typically reasonable to ignore special relativity whenever the Lorentz 
factor (𝛾𝛾) is close to 1.00.  In this problem 𝛽𝛽 = 𝑣𝑣

𝑐𝑐
= 0.0125. 

𝛾𝛾 =
1

�1 − 𝛽𝛽2
= 1.000078 

Relativity is not a concern. 
 
2b) Kinetic energy of a photoelectron is given by 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝛾𝛾 − 𝜙𝜙 

1
2
𝑚𝑚𝑣𝑣2 =

ℎ𝑐𝑐
𝜆𝜆
− 𝜙𝜙 

ℎ𝑐𝑐
𝜆𝜆

=
1
2
𝑚𝑚𝑣𝑣2 + 𝜙𝜙 

𝜆𝜆 =
ℎ𝑐𝑐

   12𝑚𝑚𝑣𝑣
2 + 𝜙𝜙   

 

Think: it will be handy to use ℎ𝑐𝑐 = 1240 eV.  Determine 1
2
𝑚𝑚𝑣𝑣2 in units of eV.  Use 𝑚𝑚𝑒𝑒 = 0.511 MeV

𝑐𝑐2
. 

Look up the work function of aluminum on the equation sheet as well. 

𝜆𝜆 =
1240 eV

   12 �0.511 × 106 eV
𝑐𝑐2� (0.0125𝑐𝑐)2 + 4.08 eV   

 

𝝀𝝀 = 𝟐𝟐𝟐𝟐.𝟐𝟐 nm 
 
3a) Notice: on this question it is acceptable to answer with 3 sig figs (standard exam rules) or with the implied 
number of sig figs (which is actually 5 in this unusual case). 
Did you remember the negative sign?  Energy values of the hydrogen atom are negative.  

𝐸𝐸6 = −
13.606 eV

62
= −0.377944 eV 

 
3b) The atom absorbed a photon.  Going to a higher 𝑛𝑛 state implies going to a less negative state (energy increases). 
3c) Determine 𝐸𝐸8 the same way and use it to determine |Δ𝐸𝐸| = 𝐸𝐸𝛾𝛾 . 

𝐸𝐸8 = −0.212594 eV 
|Δ𝐸𝐸| = 𝐸𝐸8 − 𝐸𝐸6 = 0.165351 eV 

The wavelength of light is given by 

𝐸𝐸𝛾𝛾 =
ℎ𝑐𝑐
𝜆𝜆

= |Δ𝐸𝐸| 

The momentum of light is given by 

𝑝𝑝 =
ℎ
𝜆𝜆

=
|Δ𝐸𝐸|
𝑐𝑐

= 0.165351
eV
𝑐𝑐

= 𝟖𝟖.𝟖𝟖𝟖𝟖𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟐𝟐𝟐𝟐 𝐤𝐤𝐤𝐤 ∙
𝐦𝐦
𝐬𝐬

 

Notice the result used the conversion 1.602 × 10−19 J = 1 eV. 
You shouldn’t be writing that last form with five sig figs. 
Notice it may be wise on exams to stick to the exam rules and use three sig figs on final results. 
Engineers have it so easy…right? 
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4a) Shorter.  In Frame 𝐒𝐒′, the rod is moving to the left.  In a frame where the rod is moving, length contracts. 
 
4b) Span in the 𝑥𝑥-direction decreases (𝐿𝐿𝑥𝑥′ < 𝐿𝐿𝑥𝑥) but span in the 𝑦𝑦-direction doesn’t change �𝐿𝐿𝑦𝑦′ = 𝐿𝐿𝑦𝑦�. 

𝜽𝜽 < 𝜽𝜽′ 
 
4c) In Frame 𝐒𝐒, the horizontal & vertical spans are  

𝐿𝐿𝑥𝑥 = (2.50 cm) cos 40.0° = 1.9151 cm 

𝐿𝐿𝑦𝑦 = (2.50 cm) sin 40.0° = 1.6070 cm 
The Lorentz factor in this problem is 

𝛾𝛾 =
1

�1 − 𝛽𝛽2
=

1

�1 − (0.640)2
= 1.3014 

The contracted horizontal span in Frame 𝐒𝐒′ is 

𝐿𝐿𝑥𝑥′ =
𝐿𝐿𝑥𝑥
𝛾𝛾

=
1.915 cm

1.3014
= 1.4716 cm 

The new rod length is thus 

𝐿𝐿 = �𝐿𝐿𝑥𝑥′2 + 𝐿𝐿𝑦𝑦′2 

WATCH OUT!  The vertical span is unchanged! 

𝐿𝐿 = �𝐿𝐿𝑥𝑥′2 + 𝐿𝐿𝑦𝑦2  

𝐿𝐿 = ��1.4716 cm�2 + �1.6070 cm�2 

𝑳𝑳 = 𝟐𝟐.𝟏𝟏𝟏𝟏 cm 
 
  

Frame 𝐒𝐒 

𝑦𝑦 

𝑥𝑥 
Frame 𝐒𝐒′ 

𝑦𝑦′ 

𝑥𝑥′ 𝜃𝜃′ 𝜃𝜃 
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5a) Answer: nm−1/2.  
If you answered m−1/2 I gave you half credit. 
We were told this plot is normalized. 
Total area under the square of the curve must be 1. 
This happens here if units on the vertical axis equal 1

√units on 𝑥𝑥-axis
. 

 
5b) Answer: At point 𝑥𝑥 = 5.00 nm.  I expect you to include units!  I specifically told you to ignore the endpoints 0 & 12 nm. 
The probability distribution (for a 1D problem) is given by 

𝑃𝑃(𝑥𝑥) = 𝜓𝜓∗(𝑥𝑥)𝜓𝜓(𝑥𝑥) 
Zero probability occurs whenever 𝑃𝑃(𝑥𝑥) = 0. 
Notice this also happens when 𝜓𝜓(𝑥𝑥) = 0 
  
5c) Answer: at approximately 𝑥𝑥 = 7.6 nm.  In the plot below we can see the probability of being found at 3.2 nm is much less likely. 
For a real-valued wavefunction 

𝑃𝑃(𝑥𝑥) = 𝜓𝜓∗(𝑥𝑥)𝜓𝜓(𝑥𝑥) = 𝜓𝜓2(𝑥𝑥) 
The value of 𝜓𝜓2(7.6 nm) is significantly larger than 𝜓𝜓2(𝑥𝑥) for all other 𝑥𝑥. 
 
5d) My plot is shown below.  Notice the peak heights and locations.  Notice the label with units on the vertical axis. 
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6a) Answer: 𝜓𝜓(𝐿𝐿) = 0. The problem statement clearly indicates 𝑈𝑈(𝐿𝐿) = ∞.  We expect zero probability of the 
particle being found at 𝑥𝑥 = 𝐿𝐿.  This implies the wavefunction is zero at 𝑥𝑥 = 𝐿𝐿. 
 
6b) Best answer was “None of the other answers is correct.” 
For the wavefunction to go to zero at both 𝑥𝑥 = 0 & 𝑥𝑥 = 𝐿𝐿 we assume 

𝜓𝜓(𝑥𝑥) = �2
𝐿𝐿

sin(𝑘𝑘𝑘𝑘) 

where wavenumber 𝑘𝑘 relates to wavelength using 

𝑘𝑘 =
2𝜋𝜋
𝜆𝜆

 

The wavelengths which fit require 𝑛𝑛 half-wavelengths fit in the length of the well. 

𝐿𝐿 = 𝑛𝑛 �
𝜆𝜆
2
�    →      𝜆𝜆𝑛𝑛 =

2𝐿𝐿
𝑛𝑛

 

This gives 

𝑘𝑘 =
2𝜋𝜋

   2𝐿𝐿𝑛𝑛    
=
𝒏𝒏𝒏𝒏
𝑳𝑳

 

You could’ve also looked at the wavefunction for particle-in-a-box given on the equation sheet to see this… 

6c) Expectation value of kinetic energy is given by 

〈𝐾𝐾�〉 = 〈
𝑝̂𝑝2

2𝑚𝑚
〉 =

1
2𝑚𝑚

� 𝜓𝜓∗(𝑥𝑥) �𝑖𝑖ℏ
𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

𝜓𝜓(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝐿𝐿

0
 

〈𝐾𝐾�〉 = −
ℏ2

2𝑚𝑚
� �2

𝐿𝐿
sin �

𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
�2
𝐿𝐿

sin �
𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
�  𝑑𝑑𝑑𝑑

𝐿𝐿

0
 

〈𝐾𝐾�〉 = −
ℏ2

2𝑚𝑚
∙

2
𝐿𝐿
� sin �

𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
sin �

𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
�  𝑑𝑑𝑑𝑑

𝐿𝐿

0
 

〈𝐾𝐾�〉 = −
ℏ2

2𝑚𝑚
∙

2
𝐿𝐿
� sin �

𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
� �− �

𝜋𝜋𝜋𝜋
𝐿𝐿
�
2
� sin �

𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
�  𝑑𝑑𝑑𝑑

𝐿𝐿

0
 

〈𝐾𝐾�〉 =
ℏ2

2𝑚𝑚
∙

2
𝐿𝐿
∙ �
𝜋𝜋𝜋𝜋
𝐿𝐿
�
2
� sin2 �

𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿
�  𝑑𝑑𝑑𝑑

𝐿𝐿

0
 

〈𝐾𝐾�〉 =
ℏ2

2𝑚𝑚
∙

2
𝐿𝐿
∙ �
𝜋𝜋𝜋𝜋
𝐿𝐿
�
2
�
𝑥𝑥
2
−

sin �2𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿 �

4𝜋𝜋𝜋𝜋𝐿𝐿
�

0

𝐿𝐿

 

〈𝐾𝐾�〉 =
ℏ2

2𝑚𝑚
∙

2
𝐿𝐿
∙ �
𝜋𝜋𝜋𝜋
𝐿𝐿
�
2
��
𝐿𝐿
2
− 0� − (0 − 0)� 

〈𝐾𝐾�〉 =
ℏ2

2𝑚𝑚
∙

2
𝐿𝐿
∙ �
𝜋𝜋𝜋𝜋
𝐿𝐿
�
2
∙
𝐿𝐿
2

 

〈𝑲𝑲�〉 =
ℏ𝟐𝟐𝝅𝝅𝟐𝟐𝒏𝒏𝟐𝟐

𝟐𝟐𝟐𝟐𝑳𝑳𝟐𝟐
    𝐨𝐨𝐨𝐨     

𝒉𝒉𝟐𝟐𝒏𝒏𝟐𝟐

𝟖𝟖𝟖𝟖𝑳𝑳𝟐𝟐
      𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰  𝒏𝒏 = 𝟏𝟏,𝟐𝟐,𝟑𝟑, … 

  
Note: to get the form on the right I plugged in ℏ = ℎ

2𝜋𝜋
.  Either of these forms was full credit on the exam. 



Version A, White 

7a) We are asked to determine the normalization constant for a 3D radial wavefunction.  Don’t forget the 4𝜋𝜋𝑟𝑟2! 
Also, notice the limits are given by the smallest possible radius (𝑟𝑟 = 0) to the largest (𝑟𝑟 = ∞). 

1 = � 𝜓𝜓∗(𝑟𝑟) 𝜓𝜓(𝑟𝑟) 4𝜋𝜋𝑟𝑟2 𝑑𝑑𝑑𝑑
∞

0
 

For a real-valued wavefunction, 𝜓𝜓∗(𝑟𝑟) = 𝜓𝜓(𝑟𝑟) and thus  

𝜓𝜓∗(𝑟𝑟) 𝜓𝜓(𝑟𝑟) = 𝜓𝜓2(𝑟𝑟) = �𝐴𝐴𝑒𝑒−9𝑟𝑟/2𝐿𝐿��𝐴𝐴𝑒𝑒−9𝑟𝑟/2𝐿𝐿� = 𝐴𝐴2�𝑒𝑒−9𝑟𝑟/2𝐿𝐿�2 = 𝐴𝐴2𝑒𝑒−9𝑟𝑟/𝐿𝐿 = 𝐴𝐴2𝑒𝑒−𝑎𝑎𝑟𝑟2      where  𝑎𝑎 =
9
𝐿𝐿

 

1 = � 𝐴𝐴2𝑒𝑒−𝑎𝑎𝑟𝑟  4𝜋𝜋𝑟𝑟2 𝑑𝑑𝑑𝑑
∞

0
 

1 = 4𝜋𝜋𝜋𝜋2 � 𝑒𝑒−𝑎𝑎𝑟𝑟  𝑟𝑟2 𝑑𝑑𝑑𝑑
∞

0
 

Use the integral table to find 

1 = 4𝜋𝜋𝜋𝜋2 �−
𝑒𝑒−𝑎𝑎𝑟𝑟

𝑎𝑎3
(𝑎𝑎2𝑟𝑟2 + 2𝑎𝑎𝑟𝑟 + 2)�

0

∞

 

Think: from experience you should already know the 𝑟𝑟 = ∞ drops out for all terms because 𝑒𝑒−∞ → 0. 
Also, we can flip limits to get rid of the minus sign. 

1 = 4𝜋𝜋𝜋𝜋2 �+
𝑒𝑒−𝑎𝑎𝑟𝑟

𝑎𝑎3
(𝑎𝑎2𝑟𝑟2 + 2𝑎𝑎𝑟𝑟 + 2)�

∞

0

 

Notice 𝑒𝑒−0 = 1.  Also notice the first two terms in parentheses both drop out when 𝑟𝑟 = 0! 
The only surviving term upon plugging in the limits is 

1 = 4𝜋𝜋𝜋𝜋2 ∙ �
2
𝑎𝑎3
� 

𝐴𝐴2 =
𝑎𝑎3

8𝜋𝜋
 

𝐴𝐴 = �𝑎𝑎
3

8𝜋𝜋
 

Now plug in 𝑎𝑎 = 9
𝐿𝐿
. 

𝐴𝐴 = ��
9
𝐿𝐿�

3

8𝜋𝜋
 

𝑨𝑨 = � 𝟕𝟕𝟕𝟕𝟕𝟕
𝟖𝟖𝟖𝟖𝑳𝑳𝟑𝟑

 

This final answer is simplified and in typical form for a physics class. 
If you are an engineer, it is good practice to reduce all numerical factors into a single constant sitting out front of the 
radical like this: 

𝑨𝑨 =
𝟓𝟓.𝟑𝟑𝟑𝟑
𝑳𝑳𝟑𝟑/𝟐𝟐  

Either of these last two forms was full credit. 
 


