To help you practice for the coding I made a stump code similar to what might be seen on your test. Things you may have to do include:

1. Define constants, POI position, etc
2. Compute \vec{r}
a. From source to POI for electric field
b. From charge causing force to charge experiencing force for Coulomb's law
3. Compute Coulomb force of one charge on another
4. Compute electric field due to point charges
5. Animate motion using the Euler-Cromer Method (ECM)

ECM can be implemented using momentum or velocity as shown below.

```
GlowScript 3.1 VPython
#define any constants you need!!!
frog = sphere()
frog.pos = vec(4,0,0) #in m
frog.velocity = vec(0,0,0) #in m/s
frog.acceleration = vec(0,0,0) #in m/2^
frog.mass = 1e3 #in kg
cow = sphere()
Cow.pos = vec(4,0,0)
cow.acceleration = vec (0,0,0) #in m/2^2
low.charge = -1e-5 
#what would you do to compute net electric field
#at POI caused by charges frog & cow?
t=0
dt=0.1
while t<10:
    rate (1/dt)
    #what would you do to animate motion of cow
    #What would you do to animate motion
\begin{tabular}{|c|c|}
\hline \(\vec{F}_{N E T} \rightarrow \vec{a} \rightarrow \vec{v} \rightarrow \vec{r}\) & \(\vec{F}_{N E T} \rightarrow \vec{p} \rightarrow \vec{r}\) \\
\hline \begin{tabular}{l}
- Compute \(\vec{F}_{N E T}\). \\
- Use \(\vec{a}=\frac{\vec{F}_{N E T}}{m} \quad\) (Newton's 2 \({ }^{\text {nd }}\) Law) \\
- Use \(\Delta \vec{v}=\vec{a} \Delta t \quad\left(\vec{a}=\frac{\Delta \vec{v}}{\Delta t}\right)\) \\
Equivalent to \(\vec{v}_{f}=\vec{v}_{i}+\vec{a} t\) \\
In code \(v+=a * d t\) \\
- Use \(\Delta \vec{r}=\vec{v} \Delta t \quad\left(\vec{v}=\frac{\Delta \vec{r}}{\Delta t}\right)\) \\
Equivalent to \(\vec{r}_{f}=\vec{r}_{i}+\vec{v} t\) \\
In code ball.pos \(+=\mathrm{v}^{\star} d t\) \\
- Increment time using \(t+=d t\)
\end{tabular} & \begin{tabular}{l}
- Compute \(\vec{F}_{N E T}\). \\
- Use \(\Delta \vec{p}=\vec{F} \Delta t \quad\left(\vec{F}=\frac{\Delta \vec{p}}{\Delta t}\right)\) \\
This is a variation of Newton's \(2^{\text {nd }}\) Law \\
Equivalent to \(\vec{p}_{f}=\vec{p}_{i}+\frac{\vec{F}}{m} t\) \\
In code \(p+=F / m * d t\) \\
- Use \(\vec{v}=\frac{\vec{p}}{m} \quad\) (def'n of momentum) \\
- Use \(\Delta \vec{r}=\vec{v} \Delta t \quad\left(\vec{v}=\frac{\Delta \vec{r}}{\Delta t}\right)\) \\
Equivalent to \(\vec{r}_{f}=\vec{r}_{i}+\vec{v} t\) \\
In code ball.pos \(+=\mathrm{v}\) *dt \\
- Increment time using \(t+=d t\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Most common screw-ups on tomorrow's test will probably be:}
- using a constant or POI without defining it (or before defining it) in the code
- forgetting how to reference attributes (remember doing ball.pos or ball. charge???)
- forgetting to write \(\operatorname{vec}(0,0,0)\) instead of just \((0,0,0)\)
- forgetting you can add vector quantities together (i.e. E_tot = E_1 + E_2 )
- forgetting you can get magnitude using mag ( )
- to display a result you must with draw an arrow/text bow OR use a print statement (e.e. print ( ) )
- flipping the order of terms in the computation of \(\vec{r}\)
- screwing up the order of ECM (requires strict order to ensure conservation of energy)
- using \(+=\) and \(=\) inappropriately in ECM
- forgetting to increment time at end of ECM```

