Partial list of topics covered for PHYS 163 Exams

Anything in the book or lectures/labs is also considered fair game.

Test 1 info on page 1.

Test 2 info on page 2.

Test 3 info on page 3.

Final exam info on page 4.

Standard expectations for results on exams:

- Put final answers in the boxes (if one is provided).
- Numerical results typically include units (e.g., t = 2.22 s or $\Delta x = 1.234$ m).
- Algbraic results typically do NOT include units.
- If the rest of the problem is an algebraic result, leave constants (e.g., g) in algebraic form.
- Compress numerical factors to a three sig fig decimal number in the numerator (e.g., $\frac{2\pi kx}{3r} = 2.09 \frac{kx}{r}$).
- Simplify answers or risk losing points.
- Avoid intermediate rounding!
- Round final answers to three sig figs unless otherwise noted.
- Optional: use 4 sig figs if the 1st digit of a result is 1.

Point Charges

- Electric forces, fields, potential, potential energy
- Often arranged in a line (e.g. dipole), triangle, rectangle, circle, or even 3D
- Use symmetry to simplify
- Occasionally rotating coordinates helps
- Could also have FBDs, moving through plates, or using $K_i + U_i = K_f + U_f$ stuff

Continuous distributions of charge

- Electric field or electric potential
- Mainly rods, arcs, rings, disks, and washers
- Uniform or non-uniform density possible

Gauss's Law

- Slabs, spheres (or spherical shells), & cylinders (or cylindrical shells
- Could have conductors, insulators, or both
- Insulators could be uniform or non-uniform
- Use integration to relate total charge to constants in a given non-uniform density formula
- Sketch plots and determine units of constants

Relate potential to field and vice versa

- Use partial derivative to go from V to E
- Use line integral to go from E to V
- Interpret V vs x plots, use for computations

Capacitance (Ch 25)

- Deriving capacitance for shells, plates, etc.
- Capacitor Networks (should be able to solve with series and parallel rules)
- Connecting two previously charged caps, how will charges rearrange (or bring dielectric in/out)

Resistance & Resistivity (Ch 26)

- Current and current density (relate to the geometry of a resistor)
- Determine resistance for a particular shape (may have non-uniform cross-sectional area or resistivity)
- Resistance and/or resistivity versus temperature
- Relate resistance or resistivity to IV plots
- Relate resistivity to plots of R vs L

Resistor Circuits & RC transient Circuits (Ch 27)

- Resistor networks with series/parallel rules
- How does a resistor network change when a switch is opened/closed (or bulb burns out)
- Resistor networks with KVL & KCL
- Simple RC transients: determine initial and/or steady state conditions
- Simple RC transients: plot I/Q/V/P/U as functions of time
- Simple RC transients: interpret plots of I/Q/V/P/U to determine R, C, V_{max} , τ , etc.
- Complex RC transients: determine initial and/or steady state conditions

Magnetic Force & Torque (Ch 28)

- Mag force on moving charge
- Mag force on wire
- Mag torque on loop of wire
- Use right hand rules
- Determine or use magnetic moment

Biot-Savart Law

- Wires with straight and/or circular sections
- Net field from several long straight wires
- Use right hand rules for directions

Ampere's law

- Wires, cylindrical shells, cylinders, slab
- Uniform or non-uniform
- If non-uniform, relate current density constants to total current and find units
- Sketch plots of magnitude of B vs r
- Use right hand rules for directions

Mag flux and Induced EMF

- Rod translating or swinging in external *B*-field
- Rod on rails stuff
- External *B*-field as function of time near loop
- Loop spinning in presence of external field
- Loop changing size in external field

DC Circuits that might show up

- RL transients
- LC oscillators
- Damped Oscillator (*RLC* with no source or *battery*)
- Note: any *damped* oscillator question would probably be conceptual. The math is time-consuming and typically gets covered in-depth in a full circuits course.

AC circuits that might show up

- *RLC* Series Circuit with a *function generator* (damped, *driven* oscillator)
- Filter circuits (plot Z vs ω or i_{max} vs ω)
- Filter circuits (interpret plots of Z vs ω or i_{max} vs ω)

Final exam is <u>cumulative</u>. No practice tests are provided. Be well prepared or you *will* run out of time. Redoing old exams should help.

Expect more questions than usual. Fortunately, most final exam calculations are shorter than mid-terms.

There are too many problems to include and still have the test be doable in 2 hours.

I write the test, time it, and then start chopping stuff out to make it doable in 2 hours.

Expect many short questions with maybe five more involved calculations.

Ideally I would pick one question from each row from either column A or B (on some occasions both).

To be clear, any topics covered in the course are fair game.

For example, you might notice KVL & KCL are not emphasized in the list below. I may not make you go through all the gory details on a KVL problem, but instead have you write loop & junction equations without solving them.

I hope this gives you some idea of how I plan to get all these topics on the test while still keeping the time limit under 2 hours. Again, some topics will have to be cut for time.

Again, some topics will have to be cut for time.	
Column A	Column B
Guaranteed some kind of question about E & M waves. Expect this problem to be blatantly copied from the Ch 33 workbook questions. This will be there for sure. As an example, one year I took a problem with numbers and simply made it algebraic. Other times I might change a number/prefix or the sign/direction of a quantity.	
Guaranteed conceptual/definition questions on diamagnetism, paramagnetism, ferromagnetism or Maxwell's laws similar to hmwk. This will be there for sure. Expect this problem to be blatantly copied from Ch 32 workbook questions.	
Point charges relating to \vec{F} , \vec{E} , U or V	Use Biot-Savart law with ∞ long wires located on corners
Probably triangle, square, or circle geometry	of square, triangle, etc to relate to \vec{B}_{NET} or force on a wire
Continuous distribution of charge (arc, rod, or washer) could be non-uniformderive \vec{E} or V	Biot-Savart law using straight & circular segments
Gauss's Law in spherical or cylindrical geometry, no slabs (insulator/conductor/or both, possibly non-uniform)	Ampere's law, cylindrical geometry (possibly non-uniform)
Cap circuit (think 2 in para plus 1 in series or 2 in series	Concept Q on caps in series versus para
plus 1 in para). Might have dielectric in/out.	(charge, voltage, energy)
Resistor circuit (think 2 in para plus 1 in series or 2 in	Concept Q on resistors in series versus para
series plus 1 in para). Might have switch. Maybe KVL.	(current, voltage, power)
Problem on Φ_B & $i_{induced}$ (i.e. rod on rails with \vec{B}_{ext} , changing area with \vec{B}_{ext} , \vec{B}_{ext} is function of time changing flux through loop, generator/spinning loop $\rightarrow \omega NBA$)	Conceptual Q's on mag flux & induced currents (think magnet falls through tube or \vec{B}_{ext} changes through loop)
LC oscillator	<i>LRC</i> series This includes sketching or interpreting plots of Z vs ω and/or i_{max} vs ω (possibly including filter circuits).
RC transient	RL transient
Force/energy on charge in electric field (think charge on a string between parallel plates, charge travels between parallel plates, two charged balls on strings)	Force on moving charge in \vec{B}_{ext} , torque on loop of wire in \vec{B}_{ext} , forces on charge in \vec{B}_{ext} moving in circular motion, or forces on wires carrying current in \vec{B}_{ext}
Derive resistance of a shape using calculus and/or geometry. May involve temperature variation.	Conceptual questions on resistivity, resistance, and temperature involving different shapes similar to hmwk
Determine electric field using $E_x = -\frac{dV}{dx}$ OR determine potential difference using $\Delta V = -\int \vec{E} \cdot d\vec{s}$	Electric potential versus position with graphing