
163fa21t1aSoln (YELLOW TEST) 

 

Solutions begin on the next page. 

Distribution of grades shown on this page. 
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Grade distribution including both sections
Avg = 52, Stdev = 28

Scored out of 36
39 regular credit points possible on all versions (+3 extra credit points)

Note: problem 3c on version B only worth 1 * (not 3 *)



1a) Point charges moving around we typically use: 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 

Point charge configurations energy is 

𝑈𝑡𝑜𝑡 = 𝑈12 + 𝑈13 + 𝑈23 

Initial state: 

𝑈𝑖 = 𝑈12𝑖 + 𝑈13𝑖 + 𝑈23𝑖 

𝑈𝑖 =
𝑘𝑞1𝑞2

𝑟12𝑖

+
𝑘𝑞1𝑞3

𝑟13𝑖

+
𝑘𝑞2𝑞3

𝑟23𝑖

 

𝑈𝑖 =
𝑘𝑞1𝑞2

𝑠

√2

+
𝑘𝑞1𝑞3

𝑠

√2

+
𝑘𝑞2𝑞3

𝑠
 

Watch out!  Most common mistake is people forget 𝑈𝑓 ≠ 0!!! 

Consider the final state shown in the bottom figure at right… 

𝑈𝑓 = 𝑈12𝑓 + 𝑈13𝑓 + 𝑈23𝑓 

𝑈𝑓 =
𝑘𝑞1𝑞2

𝑟12𝑓

+
𝑘𝑞1𝑞3

𝑟13𝑓

+
𝑘𝑞2𝑞3

𝑟23𝑓

 

𝑈𝑓 =
𝑘𝑞1𝑞2

∞
+

𝑘𝑞1𝑞3

∞
+

𝑘𝑞2𝑞3

𝑠
 

𝑈𝑓 =
𝑘𝑞2𝑞3

𝑠
 

I found  

𝑚 = 16√2
𝑘𝑒2

𝑠𝑣2
 

𝒎 ≈ 𝟐𝟐. 𝟔
𝒌𝒆𝟐

𝒔𝒗𝟐
 

 

1b) When analyzing this scenario, I find it easier to start from 

Δ𝐾 = −Δ𝑈 

The potential energy associated with electric fields is independent of mass. 

Therefore 𝑞1 experiences the same Δ𝑈 for this scenario. 

𝐾𝑓 − 𝐾𝑖 = −Δ𝑈 

𝐾𝑓 − 0 = −Δ𝑈 

1

2
𝑚𝑣𝑓

2 = −Δ𝑈 

𝑣𝑓 = √−
2Δ𝑈

𝑚
 

Doubling mass reduces speed by factor √2.  Consider a ratio: 

 

𝑣𝑓
′

𝑣𝑓

=
√−

2Δ𝑈
(2𝑚)

√−
2Δ𝑈
𝑚

=
1

√2
 

 

 

 

  

𝑠 

𝑠

√2
 

𝑞1 

𝑞
3
 𝑞

2
 

𝑠 

Before 

𝑞1 

𝑟12𝑓 = 𝑟13𝑓 = ∞ 

𝑞
3
 𝑞

2
 

After 

𝑣 



2) I was slightly sneaky here. 

I hope you noticed I never defined the constant 𝒌! 

You were expected to notice that and add a line of code. 

 

The way I would code it might look something like 

what is shown below.  There are many correct ways to 

do this question… 

 

Note: the names of the variables are unimportant as 

long as the code does what it is supposed.  On test day, 

short variable names are probably recommended.  

Hopefully you’d use longer variable names in a real code to make it easier for anyone forced to read the code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Many people screw up by flipping the terms in Line 14. 

Recall the definition of the Coulomb force we’ve been using is 

�⃑�2 on 1 =
𝑘𝑞1𝑞2𝑟2 to 1

𝑟2 to 1
3  

WATCH OUT!  Notice the charges in this case carry opposite signs.   

When you plug in the charge values for this case the result for force will be a negative factor times 𝑟2 to 1. 

For cases with charges carrying opposite signs we expects force points opposite the direction of 𝑟2 to 1! 

 
  

Line 13 k = 8.99e9 

Line 14 r_2_to_1 = c1.pos – c2.pos  #see figure below 

Line 15 Force_on_1 = k*c1.q*c2.q*r/mag(r)**3 

Line 16 acceleration_of_1 = Force_on_1/c1.m 

Line 17 print(acceleration_of_1) 

c1 

c2 
r_2_to_1 = final – initial 

r_2_to_1 = c1.pos – c2.pos 

 

Force_on_1 = k*c1.q*c2.q*r/mag(r)**3  

Force_on_1 = (negative #)*r 

Force_on_1 points opposite the direction of r 



3a)  

[𝜌] =
[𝛼]

[𝑟]
 

[𝛼] =
C

m2
 

Be aware 

𝛼 ≠
C

m2
 

The constant 𝛼 is a number with units (if & when you would eventually plug in a number).   

When we write [𝛼] that implies “the units of 𝛼”. 

Use the rectangular brackets appropriately or expect to lose points. 

 

3b) Gauss’s Law gives us 

𝐸𝐴𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
𝑞𝑖𝑛

𝜖0

 

Since we were asked to compute the field (mag) inside the surface, we are only enclosing SOME of the charge.   

The upper limit of integration should NOT go all the way to the outer radius of the object!!! 

𝐸𝐴𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
1

𝜖0

∫ 𝑑𝑞𝑠ℎ𝑒𝑙𝑙𝑠

𝑟

𝑅

 

Think: what you are doing when you do the integral is summing up the charge of every shell inside the Gaussian 

surface.  As you move radially outwards from the center, charge density of each shell to decreases according to the 

given formula for 𝜌.  This is why we CANNOT use the tricks associated with uniform distributions for this 

problem… 

𝐸𝐴𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
1

𝜖0

∫ 𝜌at shell radius 𝑑𝑉𝑠ℎ𝑒𝑙𝑙

𝑟

𝑅

 

 

𝐸(4𝜋𝑟2) =
1

𝜖0

∫
𝛼

�̃�
 4𝜋�̃�2 𝑑�̃�

𝑟

𝑅

 

WATCH OUT!  The shell radius �̃� and the Gaussian radius 𝑟 are not the same thing! 

The shell radius can take on any value between the lower limit & upper limits… 

From there either of the following answers is fine with me: 

𝐸 =
𝛼

𝜖0𝑟
2
(
𝑟2

2
−

𝑅2

2
) =

2𝜋𝑘𝛼

𝑟2
(𝑟2 − 𝑅2) 

Note: in the question I asked for electric field (not electric field magnitude). 

In this problem, most physicists assume a positive result implies radially outwards. 

As such, we typically leave off the �̂� in the answer (but explicitly writing it is also correct). 

 

3c) Only worth 1 point.  On some tests I forgot update from the old problem (***) to what was actually given (*). 

The above result is valid when 𝑟 =  3𝑅.  Plug in those values and solve for 𝛼 to find: 

𝛼 =
9

4
𝐸𝜖0 =

9𝐸

16𝜋𝑘
 

 

  

𝑟 

�̃� 



4) We tend to build washers and disks from rings. 

The process is nearly identical to the process shown in 22.21 & 22.22 in the workbook.  

 

𝜎 =
𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
=

𝑄

𝜋𝑅2
2 − 𝜋𝑅1

2 

𝑑𝑞 = 𝜎 𝑑𝐴 =
𝑄

𝜋(𝑅2
2 − 𝑅1

2)
(2𝜋𝑟)𝑑𝑟 

The integral is 

�⃑⃑� = ∫𝑑�⃑⃑� 

�⃑⃑� = ∫
𝑘 𝑑𝑞 𝑧

((ring radius)2 + 𝑧2)
3
2

�̂� 

�⃑⃑� = ∫
𝑘 𝜎 𝑑𝐴 𝑧

((ring radius)2 + 𝑧2)
3
2

�̂� 

�⃑⃑� = ∫

𝑘 {
𝑄

𝜋(𝑅2
2 − 𝑅1

2)
(2𝜋𝑟)𝑑𝑟}  𝑧 

((ring radius)2 + 𝑧2)
3
2

�̂� 

 

�⃑⃑� =
2𝑘𝑄𝑧�̂�

𝑅2
2 − 𝑅1

2 ∫  
𝑟 

(𝑟2 + 𝑧2)3/2

𝑅2

𝑅1

𝑑𝑟 

�⃑⃑� =
2𝑘𝑄𝑧�̂�

𝑅2
2 − 𝑅1

2 [−
1

(𝑟2 + 𝑧2)
1
2

]

𝑅1

𝑅2

 

Eliminate the minus sign by flipping the limits… 

�⃑⃑� =
2𝑘𝑄𝑧�̂�

𝑅2
2 − 𝑅1

2 [
1

√𝑟2 + 𝑧2
]
𝑅2

𝑅1

 

Final result for field.   

�⃑⃑� =
2𝑘𝑄𝑧

𝑅2
2 − 𝑅1

2 [
1

√𝑅1
2 + 𝑧2

−
1

√𝑅2
2 + 𝑧2

]  �̂� 

Comments on this result: 

 I asked for field (not field magnitude), you answer must include the unit vector �̂� 

 Because 𝑅2 > 𝑅1 we expect the first term in brackets should be larger than the second.   

Result points +�̂� as expected for a positively charged washer or disc. 

 

Note: we expect this result should become 
𝑘𝑄

𝑧2 �̂� in the limit 𝑧 → ∞.  In this case it is NOT obvious. 

Showing how this is done is described in some workbook problem (22.22 I believe?). 

Perhaps you can see an application of the binomial expansion coming into play???  

𝑧 

�̂� 

𝑗̂ 

𝑖̂ 

𝑟 

𝑅 

𝑑�⃑⃑� 

𝑑𝑟 
2𝜋𝑟 



5a) A negative charge would require the left plate at higher potential. 

A positive charge would require the right plate to be held at higher potential. 

We were given no indication of the sign of the charge on the ball.   

As such, it is impossible to determine which plate must be held at higher potential. 

 

WAIT A MINUTE…I THOUGHT YOU TOLD US:  

“Assume 𝑞 is positive unless you are told otherwise.” 

Yes, I did say that all the time. 

HOWEVER, if you listened closely, I generally followed that up with something like: 

“If the charge is negative we can always flip the sign when we plug in values.” 

 

If you don’t believe me, check the video lectures… 

 

Finally, students were specifically told we did not know the sign of the charge during the exam. 

Again, we were given no indication of the sign of the charge on the ball.   

As such, it is impossible to determine which plate must be held at higher potential. 

 

5b) Even though we don’t know the signs of the charges or plates, we still 

know the sizes of the electric field & electric force experienced by the ball. 

field 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝐸∥𝑝𝑙𝑎𝑡𝑒𝑠 =
|Δ𝑉|

𝑠
 

𝐹 = (charge 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒) × (field 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒) 

𝐹 =
|𝑞| |Δ𝑉|

𝑠
 

From there I did an FBD (see far right figure).  In equilibrium 𝑎𝑥 = 𝑎𝑦 = 0. 

Σ𝐹𝑥:   𝑇 sin 𝜃 = 𝐹          Σ𝐹𝑦:   𝑇 cos 𝜃 = 𝑚𝑔 

A ratio of horizontal & vertical force eqt’ns eliminates 𝑇 and produces tan 𝜃. 

We were told the small angle approximation applies. 

In this case this informs us 

tan 𝜃 ≈ sin 𝜃 =
𝑥

𝐿
     𝐨𝐫      tan 𝜃 =

𝑥

√𝐿2 − 𝑥2
 

Do some algebra to find 

|𝚫𝑽| =
𝒎𝒈𝒔𝒙

|𝒒|√𝑳𝟐 − 𝒙𝟐
≈

𝒎𝒈𝒔𝒙

|𝒒|𝑳
 

 

NOTICE:  Since the sign of the charge is ambiguous in the problem statement, I expect you to add in the 

clarification of the absolute value sign for charge.  I may be lenient on the absolute value on charge if that caused 

you to miss the earlier part… 

 

 

 

5c) The electric field is constant regardless of the ball’s position within the plates. 

This assumes the ball is far from the ends of the plates (an assumption stated in the problem). 

Since the electric field is unchanged, we expect force 𝐹 = 𝑞𝐸 will also remain unchanged. 

The ball’s weight is also unchanged. 

This implies the angle is also unchanged (consult the FBD)!!! 

If the angle is unchanged, as 𝑳 increases parameter 𝒙 must also increase! 

  

𝑥 

𝑖̂ 

𝑗̂ 

�̂� 

𝑠 

𝐿 
𝜃 

𝐹 

𝑚𝑔 

𝑇 
𝜃 

𝑇 cos 𝜃 

𝑇 sin 𝜃 



6a)  The following equations have an implied 𝑖̂ on each side.  A negative results implies a force to the left. 

𝐹𝑥 = 𝑞𝐸𝑥 

𝐹𝑥 = (−𝑒)(−𝑠𝑙𝑜𝑝𝑒) 

𝐹𝑥 = (𝑒)(𝑠𝑙𝑜𝑝𝑒) 

𝐹𝑥 = (1.602 × 10−19 C) (
−40.0 nV

2.00 μm
) 

𝑭𝒙 = −𝟑. 𝟐𝟎 × 𝟏𝟎−𝟐𝟏 𝐍 

Force MAGNTIUDE is absolute value of this number!!! 

 

THINK:  Our analogy tells us to think of the electron as a bubble below the surface of the curve. 

If released from rest we would expect the bubble to move to a more negative horizontal position. 

Negative result for 𝐹𝑥 (force to the left) makes sense.  

 

6b)  To the left.   

Note: A bubble under the curve would move up and to the left.   

HOWEVER, the analogy uses only the horizontal position of the bubble as it floats along under the curve. 

 

6c) If released from rest, the electron initially has zero kinetic energy. 

It does have initial potential energy given by  

𝑈𝑖 = 𝑞𝑉𝑖 

𝑈𝑖 = (−1.602 × 10−19 C)(10.0 nV) 

As the electron travels to the left, it eventually reaches a horizontal position with equal potential. 

When this occurs, we know the electron must once again have all potential energy (no kinetic energy). 

This must be the point where the electron reverse direction! 

This occurs when 𝑉𝑓 = 10.0 nV at horizontal position 𝒙𝒇 = −𝟑. 𝟎𝟎 𝛍𝐦. 

  



7a) We know the static electric field is zero inside a conductor. 

The image below is my attempt to indicate the pattern of charge density by 

using increasing line thickness... 

The inner surface of each conductor is polarized in such a way as to balance 

the NET charge inside that particular conductor. 

Net charge on any one shell is still 𝑄 as dictated by the problem statement. 

As such, the charge at each radius of interest is tabulated at right. 

 

7b) A Gaussian surface drawn with radius between 𝑅4 & 𝑅5 is shown with a 

dotted pink line below.  Notice it encloses net charge +𝟑𝑸.  All charge on the 

outer conductor combines in such a way as to cause no NET contribution to 

the electric field for radii less than 𝑅5!!! 

 

Since we are outside of a spherical surface, we know 

𝐸 =
𝑘𝑞𝑖𝑛

𝑟2
=

3𝑘𝑄

𝑟2
 

  

Radius Charge Charge Density 

1 −𝑄 𝜎1 = −
𝑄

4𝜋𝑅1
2 

2 +2𝑄 𝜎2 = +
𝑄

2𝜋𝑅2
2 

3 −2𝑄 𝜎3 = −
𝑄

2𝜋𝑅3
2 

4 +3𝑄 𝜎4 = +
3𝑄

4𝜋𝑅4
2 

5 −3𝑄 𝜎5 = −
3𝑄

4𝜋𝑅5
2 

6 +4𝑄 𝜎6 = +
4𝑄

4𝜋𝑅6
2 

𝟏 

𝟐 

𝟑 

𝟒 

𝟓 

𝟔 

+𝑸 

−𝟐𝑸 

−𝑸 

−𝟑𝑸 

+𝟑𝑸 

+𝟐𝑸 

+𝟒𝑸 



Figure at right shows charges and field contribution from each charge.  

Distances and field arrows drawn to scale. 

Charges are listed below.   

 𝑞1 = −𝑒 

 𝑞2 = +2𝑒 

 𝑞3 = −3𝑒 

 𝑞4 = +𝑒 

 

8a) Net electric potential is negative. 

𝑉𝑡𝑜𝑡 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 

𝑉𝑡𝑜𝑡 = −
𝑘𝑒

𝑑
+

𝑘(2𝑒)

2𝑑
−

𝑘(3𝑒)

2𝑑
+

𝑘𝑒

𝑑
 

 

8b) Twice the charge does not balance twice the distance! 

Unlike electric potential calculations, distance is squared in the electric 

field calculation. 

Net field points DOWN & LEFT. 

 

8c) You should find 

�⃑� 1 =
𝑘𝑒

𝑑2
(−𝑖̂) �⃑� 2 =

𝑘(2𝑒)

(2𝑑)2
(+𝑗̂) �⃑� 3 =

𝑘(3𝑒)

(2𝑑)2
(+𝑖̂) �⃑� 4 =

𝑘𝑒

𝑑2
(−𝑗̂) 

 

�⃑� 𝑁𝐸𝑇 =
𝑘𝑒

𝑑2
[−

1

4
𝑖̂ −

1

2
𝑗̂] 

Sketch this field arrow and use inverse tangent to find 

 

𝜽 = −𝟏𝟏𝟔. 𝟔° 𝒇𝒓𝒐𝒎 𝐭𝐡𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐡𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 𝐚𝐱𝐢𝐬 

 

Note: if you answered −116.6° below the positive horizontal axis you are wrong.  The word below operates like a 

negative sign in that sentence.   

 

This is why it is best to sketch the arrow to clearly explain things whenever possible (i.e. if you had to present this 

data to other people for some reason). 

 

 

Extra credit solutions are not written up.   

Writing these solutions takes days of work as it is… 

𝟐 

𝟑 

𝟒 

𝟏 𝐸1 

𝐸2 

𝐸3 

𝐸4 


