AFTER I GIVE THE SIGNAL TO BEGIN YOU CAN REMOVE THIS SHEET. DO NOT TURN IT IN!

163fa21t2a – Once the exam has officially started, remove the top sheet. The remaining sheets comprise your exam. It is each student's individual responsibility to ensure the instructor has received her or his completed exam. Any exams not received by the instructor earn zero points. Smart watches, phones, or other devices (except scientific calculators) are not permitted during the exam.

1 .1 .				- 2	
$e = 1.602 \times 10^{-19} \mathrm{C}$	$k = 8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$	$c = 3.00 \times 10^8 \frac{\text{m}}{\text{s}}$	$\varepsilon_0 = 8.85$	$\times 10^{-12} \frac{C^2}{N \cdot m^2}$	
$h = 6.626 \times 10^{-34} \mathrm{J \cdot s}$	$hc \approx 1240 \text{ eV} \cdot \text{nm}$	$\mu_0 = 4\pi \times 10^{-7} \ \frac{\text{T} \cdot \text{m}}{\text{A}}$	1 eV = 1.	602×10^{-19} J	
$m_p = 1.673 \times 10^{-27} \text{ kg}$	$m_e = 9.11 \times 10^{-31} \mathrm{kg}$	11			
$\vec{F} = q\vec{E}$	$k = \frac{1}{4\pi\varepsilon_0}$	$\Delta x = v_{ix}t + \frac{1}{2}a_xt^2$	$v_{fx}^2 = v_{ix}^2 -$	$+2a_x\Delta x$	
$\vec{F}_{1on2} = \frac{kq_1q_2}{r^2}\hat{r}_{1to2}$	$\vec{E} = \frac{kq}{r^2}\hat{r}$	$V = \frac{kq}{r}$	$U_{12} = \frac{kq_1q}{r_{12}}$	2	
$\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{q_{enc}}$	$q_{enc} = \int \rho dV$	$E_{\parallel plates} = \frac{ \Delta V }{r} = \frac{\sigma}{r}$	$E_{plate} = \frac{\sigma}{2}$		
$E_{ring} = \frac{\epsilon_0}{(R^2 + z^2)^{3/2}}$	$V_{ring} = \frac{kQ}{(R^2 + z^2)^{1/2}}$	$E_x = -\frac{dV}{dx}$	$V_b - V_a =$	$-\int_a^b \vec{E} \cdot d\vec{s}$	
$\Delta U = q \Delta V$	$U_C = \frac{1}{2} Q_C \Delta V_C$	$Q_C = \Delta V_C C$	$I_C = -C \frac{dv}{dt}$	<u>'c</u>	
$\frac{1}{C_{cor}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$	$C_{eq} = C_1 + C_2 + \cdots$	$C_{plates} = \frac{\varepsilon_0 A}{d}$	$C' = \kappa C$	L	
$R_{eq} = R_1 + R_2 + \cdots$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$	$R = \frac{\rho L}{A}$	$ ho = ho_0 (1 + $	$+ \alpha \Delta T$)	
$\Delta V_R = I_R R$	$\mathcal{P}_R = I_R \Delta V_R$	$X(t) = X_f + (X_i - X_f)e^{-t}$	$-t/\tau$ where	$\tau = RC$ or $\frac{L}{R}$	
$\vec{F} = q\vec{v} \times \vec{B}_{ext}$	$\vec{F} = I \int d\vec{s} \times \vec{B}_{ext}$	$\vec{\tau} = \vec{\mu} \times \vec{B}_{ext}$	$\vec{\mu} = N I \vec{A}$	ĸ	
$U = -\vec{\mu} \cdot \vec{B}_{ext}$	$B_{sol} = \frac{\mu_0 NI}{L}$	$B_{circle} = \frac{\mu_0 I}{2a}$	$B_{straight} =$	$=\frac{\mu_0 I}{2\pi a}$	
$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc}$	$I_{enc} = \int \vec{J} \cdot d\vec{A}$	$\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}$	$\Phi_B = \int \vec{B}$	$d\vec{A}$	
$EMF = -N \frac{d}{dt} \Phi_B$	$EMF = B_{\perp}Lv$	$L = \frac{\Phi_B}{I}$	$U_L = \frac{1}{2}LI^2$		
$\frac{\Delta V_2}{\Delta V_1} = \frac{N_2}{N_1}$	$\Delta V_L = -L \frac{dI_L}{dt}$	$Z = \sqrt{R^2 + (X_L - X_C)^2}$	$\tan \phi = \frac{x_L}{2}$	$\frac{-X_C}{R}$	
$X_L = \omega L$	$X_C = \frac{1}{\omega C}$	$V_{source} = V_0 \sin \omega t$	$i = i_{max}$ si	$n(\omega t - \phi)$	
$\Delta V_{Rmax} = i_{max}R$	$\Delta V_{Lmax} = i_{max} X_L$	$\Delta V_{Cmax} = i_{max} X_C$	V _{source max}	$= i_{max}Z$	
$\Delta V_{max} = \frac{\Delta V_{pk-pk}}{2}$	$\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}$	$\omega_0 = \frac{1}{\sqrt{LC}}$		Destat 14	T
$\mathcal{P}_{avg} = I_{rms} \Delta V_{rms} \cos \phi = I_{rms}^2 R$	2	2	Material	20° C	Coefficient
$c = f\lambda$	$k = \frac{2\pi}{\lambda}$	$\omega = 2\pi f = \frac{2\pi}{\pi}$	Cilver	(in SI units)	(in SI units $)$
$\vec{s} - \vec{E} \times \vec{B}$	$I - S - \frac{Emax^Bmax}{Emax^Bmax}$	$-\left(\frac{1}{2}\right)\frac{E_{max}^2}{E_{max}^2} - c \frac{B_{max}^2}{E_{max}^2}$	Copper	1.02×10^{-8}	4.1×10^{-3}
$S = \frac{1}{\mu_0}$	$I_{avg} = S_{avg} = \frac{2\mu_0}{2\mu_0}$	$-\left(\frac{1}{c}\right)\frac{1}{2\mu_0} - c\frac{1}{2\mu_0}$	Aluminum	1.09×10^{-8}	4.3×10^{-3}
$\frac{E_{max}}{B_{max}} = c$	$E_{\gamma} = hf = \frac{hc}{\lambda}$		Nichrome	2.73×10^{-6}	4.4×10^{-3}
P_{ad} P_{avg} P_{avg}	h	E_{γ}	Carbon	3.5×10^{-5}	-0.5×10^{-3}
$Ruu.Fressure = \frac{1}{Area} = \frac{1}{c}$	P noton momentum – p	$b_{\gamma} = \frac{1}{c}$	Germanium	0.46	-48×10^{-3}
$\int \frac{x dx}{(x^2 + a^2)^{3/2}} = \frac{-2}{\sqrt{x^2 - a^2}}$	$\frac{1}{1-a^2}$	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left x + \sqrt{x^2 + a^2} \right $	$\left \frac{1}{x^2 \pm a^2} \right $		101110
$\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^{2}\sqrt{x^2 + a^2}}$	$=\frac{1}{a^2}\sin\theta$	$\int \frac{x dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2}$	$\pm a^2$		
$\int \frac{dx}{dx} = \frac{1}{2} \tan^{-1}$	$\frac{x}{x}$ $\int \sqrt{x^2 + x^2}$	$\frac{1}{\sqrt{x^2 + a^2}} \frac{1}{\sqrt{x^2 + a^2}} + \frac{1}{x^$	$\frac{l^2}{2} \ln \left r + \frac{1}{2} \right $	$r^{2} + a^{2}$	
$1 x^2 + a^2 = a^{-1}$	$a \qquad 1 \qquad 1 \qquad \sqrt{\lambda} \qquad -$	u u = 2 v + u = 2	o ''' ^ / ^ /	· - ~	

	$\int x^{2} + 0$	a- a	а	J	•	Ζ.		Ζ Ι ΄	<u> </u>		
	$\int \frac{x dx}{x dx}$	$=\frac{1}{-\ln r^2}$	$^{2} + a^{2}$			Binon	ial expans	ion:			
	$\int x^2 + a^2$	2 2	u			$(1\pm\delta)$	$n \approx 1 \pm n\delta$	+ …			_
$\Gamma = 10^{12}$	$G = 10^9$	$M = 10^{6}$	$k = 10^{3}$	$c = 10^{-2}$	$m = 10^{-3}$	$\mu = 10^{-6}$	$n = 10^{-9}$	$p = 10^{-12}$	$f = 10^{-15}$	$a = 10^{-18}$	

WRITE YOUR NAME AT THE TOP OF THIS PAGE!

The capacitor network at right has one capacitor with capacitance 2*C*. Each of the other capacitors in the network have capacitance *C*. **1) Determine the equivalent capacitance of this network (between points **A** & **B**). Express your answer as a decimal number with 3 sig figs times *C*.

A negatively charged particle moves with speed v into the page. The force caused by a uniform external magnetic field points to the left. For each of the following questions, circle the answer which best relates to each component of the external magnetic field.

 $\overleftarrow{F} \bigcirc \hat{j} \bigwedge_{\hat{i}} \hat{i}$

2a) The \hat{i} component of the magnetic field...

Must be positive.	Must be zero.	Must be non-zero, but it is unclear if it should be positive or negative.
Must be negative.	<i>Could</i> be non-zero since it has no effect on force at instant shown.	None of the other answers is correct.

2b) The \hat{j} component of the magnetic field...

Must be positive.	Must be zero.	Must be non-zero, but it is unclear if it should be positive or negative.
Must be negative.	<i>Could</i> be non-zero since it has no effect on force at instant shown.	None of the other answers is correct.

2c) The \hat{k} component of the magnetic field...

Must be positive.	Must be zero.	Must be non-zero, but it is unclear if it should be positive or negative.
Must be negative.	<i>Could</i> be non-zero since it has no effect on force at instant shown.	None of the other answers is correct.

A circuit is labled with known quantities at right.

***3a) Write an appropriate set of linearly independent equations in the box below for analyzing this circuit. Please label the figure at right as described in class or you will receive zero credit for this part.

***3b) Determine power delivered to the smallest resistance.

I will award almost no partial credit for this part.

Answer as a number with 3 sig figs times $\frac{\varepsilon^2}{R}$.

|--|

2*E*

ε.

3R

A circuit is connected as shown at right. Capacitor 2 is identical in size & shape to capacitor 1 but it is filled with a dielectric material with constant $\kappa = 1.75$. The capacitors are allowed to reach full charge then the switch is opened. After the switch is opened, the dielectric is removed from capacitor 2.

4a) Once the dielectric is removed, how does equivalent capacitance of the combination of capacitors 1 and 2 change? Circle the best answer.

Increases	Decreases	Stays constant	Impossible to determine without more info	
-----------	-----------	----------------	--	--

4b) Once the dielectric is removed, how does *charge on capacitor 1* change?

Ingraacas	Deereeses	Stave constant	Impossible to determine
mereases	Decreases	Stays Constant	without more info

4c) Once the dielectric is removed, how does voltage across capacitor 2 change?

Increases	Decreases	Stays constant	Impossible to determine without more info		
****4d) Determ mean the energy removed. <i>Fina</i> Write your and If energy decre	nine the percent y associated wit l energy implies swer as a numb eases, I expect a	change in energy. To b h the fully charged caps <i>after</i> the dielectric is re ber with 3 sig figs. a negative sign on the a	be clear, by <i>initial</i> energy I <i>before</i> the dielectric is smoved.	4d	

**5) A cylindrical *carbon* wire is connected to a power supply. The voltage across the wire is gradually increased. As the voltage applied across the wire increases, significant heating occurs. Sketch a plausible plot of current versus voltage for the carbon wire for the voltages described in this scenario.

***6) A circuit is built from four identical resistors as shown at right. The resistors are numbered for ease of communication. Initially the switch is in the open position.

By what numerical factor does the power to resistor 1 change (when the switch is closed)?

- If there is no change to the power delivered to resistor 1, the factor is 1.
- If the power increases, I'm expecting a factor larger than 1.
- If the power decreases, I'm expecting a factor less than 1.

i

A wire segment of length L is centered at the origin and carries current I flowing to the left.

An external field is given by $\vec{B} = \alpha x^2 \hat{k}$ where α is a positive constant.

7a) Determine the units appropriate for the constant α .

7b) Determine the *direction* of the *net* magnetic force on the wire.

If no net magnetic force, answer "no net force".

***7c) Determine the magnitude of *net* magnetic force on the wire. *If the answer is zero*, show substantial work supporting your claim. *If the answer is non-zero*, simplify your work for full credit.

y

<u>x</u>

A rectangular solid of aluminum has a cylindrical hole drilled through its entire length. The electrical resistance between the front and back faces (faces with circular holes) is 333 $\mu\Omega$ at standard room temperature 20.0°C. Dimensions for the piece of metal are z = 77.7 cm and s = 11.10 mm (figure not to scale). For reference, aluminum has a boiling point of 2470°C while the melting point is 660°C.

****8a) Determine the diameter of the cylindrical hole.

Hint: first produce an *algebraic* solution to ensure maximum partial credit (in the event you screw up plugging in the numbers).

**8b) Determine the maximum resistance possible between the front & back faces.

8a	
8b	

An *RC* circuit with capacitance 567 nF is shown at right. The two resistors in the circuit are identical but have unknown resistance. The circuit can charge while in position **A** and discharge while in position **B**. Internal resistance of the battery is negligible. A plot of capacitor charge versus time is shown for this circuit.

9a) Which occurs more rapidly: charging or discharging?

,	1 2	00000	
Charging is	Discharging	Charging	Impossible to
more repid	is more repid	& discharging	determine without
more rapid	is more rapid	happen at same rate	the value of R

9b) The plot below shows capacitor charge versus time for the circuit shown. Was this plot made while the circuit was in position **A** or position **B**?

***9d) Determine resistance R. Your answer should be within 10% of mine.

Page intentionally left blank as scratch paper.