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1a) METAL 

Typically the resistance & resistivity of metals will increase as they get hotter. 

Typically the resistance & resistivity of semi-conductors will decrease as they get hotter. 

 

1b) Use 𝑅 =
𝜌𝐿

𝑠2  because the cross-sectional area is 𝐴 = 𝑠2.   

I found 𝒔 = 𝟑𝟔𝟓 𝛍𝐦. 

 

1c) We know 𝑅ℎ𝑜𝑡 = 1.425𝑅0.   

Be careful… 57.25%𝑅ℎ𝑜𝑡  𝐼𝑆 𝑁𝑂𝑇 𝑅0 …it is similar to but not the same as the equation above. 

Also, 𝑅ℎ𝑜𝑡 = 𝑅0[1 + 𝛼(𝑇𝐶 − 20.0℃)]. 

WATCH OUT!  In the previous equation 𝑅0 is resistance at 20.0℃…NOT resistance at 0℃. 

I found 𝜶 = 𝟕. 𝟓𝟐 × 𝟏𝟎−𝟒 𝟏

℃
. 

Expect to lose points if you forgot units!!! 

 

 

 

 

 

2) Using the labels at right I found 

Loop 1 ℰ − 𝑖1𝑅 − 2𝑖2𝑅 = 0 

Loop 2 2ℰ + 3𝑖3𝑅 − 𝑖1𝑅 = 0 

Loop 3 2ℰ − 4𝑖4𝑅 + 2𝑖2𝑅 = 0 

Junction 1 𝑖0 = 𝑖1 + 𝑖3 

Junction 2 𝑖1 = 𝑖2 + 𝑖5 

Junction 3 𝑖3 + 𝑖5 = 𝑖4 
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3) Capacitance is essentially the amount of charge a pair of conductors can store per unit volt. 

Therefore we, need an expression that involves both charge and voltage. 

 

First, assume each conductor carries some amount of charge 𝑄. 

I assume the inner conductor has negative charge (to cancel a minus sign later).  

 

Realize that for a given spherical charge, we know the electric field (from Gauss’s law). 

�⃗� = −
𝑘𝑄�̂�

𝑟2
 

Think: as you move away from the central conductor, the field must get weaker…it must 

involve the variable distance 𝑟 (not the constant radius 𝑅 of the inner shell). 

 

Get potential difference between the conductors using Δ𝑉 = −∫ �⃗� ∙ 𝑑𝑠 
𝑓

𝑖
. 

Δ𝑉 = −∫ (−
𝑘𝑄�̂�

𝑟2
) ∙ 𝑑𝑟

4𝑅

𝑅

 �̂� 

Δ𝑉 = [−
𝑘𝑄

𝑟
]
𝑅

4𝑅

 

Δ𝑉 =
3𝑘𝑄

4𝑅
 

From this one determines  

𝑪 =
𝑸

𝚫𝑽
=

𝟒𝑹

𝟑𝒌
=

𝟏𝟔

𝟑
𝝅𝝐𝟎𝑹 
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4a) The time constant 𝜏 = 𝑅𝑒𝑞𝐶𝑒𝑞  gives the time scale in these types of questions. 

In both switch positions, the circuit has equivalent resistance 𝑅𝑒𝑞 = 2𝑅. 

Both charging and discharging should occur at the same rate. 

 

4b) As the capacitor charges (in position A) we expect current to initially be large then gradually fall off. 

As the capacitor discharges (in position B) we ALSO expect current to initially be large then gradually fall off. 

We cannot tell if the plot was made during charging or discharging… 

Either position could produce such a plot. 

 

4c) Let us assume charging since either switch position is valid.   

I will assume the capacitor is initially uncharged at time 𝑡 = 0− (just before switch flipped to position A). 

A capacitor preserves its voltage during switching. 

Therefore, the capacitor has no potential difference at time 𝑡 = 0+ (just after switch flipped to position A). 

By KVL, the sum of all voltage gains around the loop must be zero. 

This implies the voltage drop across the resistor is initially the same as the battery. 

After a long time in position A (at time 𝑡 = ∞), the capacitor is fully charged. 

A fully charged capacitor blocks current flow (acts like a break in the circuit). 

With no current flow, resistor voltage is zero! 

Use 

Δ𝑉𝑅 = Δ𝑉𝑅 𝑓 + (Δ𝑉𝑅 𝑖 − Δ𝑉𝑅 𝑓)𝑒
−𝑡/𝜏   

Δ𝑉𝑅 = ℰ𝑒−𝑡/𝜏 

In this expression, Δ𝑉𝑅𝑖 =
ℰ

2
 is the half of the battery’s potential difference.   

Notice, from the plot, one finds Δ𝑉𝑅 𝑖 =
ℰ

2
= 750 mV. 

 

The standard technique at this point is to look for a data point in the sweet spot of the graph (when the voltage has 

dropped by approximately 50%...but also when the data lines up close to a gridline). 

I noticed that the plot reads almost exactly 250 mV at 8.0 ns…these numbers are easily good to 2 sig figs which 

should give us errors of 10% or less.  Another good spot is probably 500 mV at 3.0 ns. 

Tip: I like to plug in voltages immediately but plug in the time at the very end (after taking natural log). 

250 mV = (750 mV) 𝑒−𝑡/𝜏 

0.3333 =  𝑒−𝑡/𝜏 

ln 0.3333  =  −
𝑡

𝜏
 

𝜏 =  −
𝑡

ln 0.3333
 

(2𝑅)𝐶 =  −
𝑡

ln 0.3333
 

𝑅 =  −
𝑡

2𝐶 ln 0.3333
 

𝑅 =  −
8.0 × 10−9 s

2(4.70 × 10−12 F) ln 0.3333
 

𝑹 = 𝟕𝟕𝟒. 𝟔 𝛀 

4d) Initial power delivered to the resistor on the central branch is 

𝒫𝑖 = Δ𝑉𝑅 𝑖𝑖 =
(Δ𝑉𝑅 𝑖)

2

𝑅
=

(750 mV)2

774. 6 Ω
≈ 𝟕𝟐𝟔 μW 



 

 

5a) We know resistor in parallel can be combined using 

1

𝑅𝑒𝑞

=
1

𝑅1

+
1

𝑅2

+ ⋯+
1

𝑅𝑁3

 

For 𝑁 identical resistors of resistance 𝑟 in parallel the equivalent resistance is  

1

𝑅𝑒𝑞

=
1

𝑟
+

1

𝑟
+ ⋯+

1

𝑟
=

𝑁

𝑟
 

Flipping the fraction gives 

𝑅𝑒𝑞 =
𝑟

𝑁
 

Note, in this particular set of circuits we must remember to add the additional resistance 𝑅 in series to get 𝑅𝑒𝑞 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 . 

 

Initially, with the switch closed, we know 𝑅𝑒𝑞 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 𝑅 +
𝑟

4
 which gives total power delivered by the battery 

𝒫𝑖 =
ℰ2

𝑅𝑒𝑞 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

=
ℰ2

𝑅 +
𝑟
4

 

Afterwards, with the switch open, we know 𝑅𝑒𝑞 = 𝑅 +
𝑟

3
 which gives total power delivered by the battery 

𝒫𝑓 =
ℰ2

𝑅𝑒𝑞 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

=
ℰ2

𝑅 +
𝑟
3

 

 

Finally, we were given 𝒫𝑓 = 𝑓𝒫𝑖  where the factor is 𝑓 = 0.925. 

𝒫𝑓 = 𝑓𝒫𝑖  

ℰ2

𝑅 +
𝑟
3

= 𝑓
ℰ2

𝑅 +
𝑟
4

 

𝑅 +
𝑟

4
= 𝑓 (𝑅 +

𝑟

3
) 

𝑅 +
𝑟

4
= 𝑓𝑅 +

𝑓

3
𝑟 

𝑅 − 𝑓𝑅 =
𝑓

3
𝑟 −

𝑟

4
 

𝑅(1 − 𝑓) = 𝑟 (
𝑓

3
−

1

4
) 

𝑟 = 𝑅
(1 − 𝑓)

(
𝑓
3

−
1
4
)
 

𝒓 = 𝟏. 𝟐𝟖𝟔𝑹 

5b) When the switch is opened, a path for current to travel is removed from the circuit. 

This implies more equivalent resistance and less total current (since battery voltage remains constant). 

Since battery power is proportional to current times voltage (and voltage remains unchanged), power must also drop 

(factor less than 1). 

 

Many students would say things like “Resistance went up so power must go down” or “Power is inversely 

proportional to resistance” but did not add the crucial clarification about voltage remaining constant.  Some students 

would talk about removing resistance then say current goes down.  By itself this is very confusing as well.  I looked 

for clear communication…not just regurgitating memorized phrases without adequate context. 



  



6a) Once steady state is reached, both capacitors are charged. 

When charged in this manner (wired in parallel), we expect both caps to have the same potential difference. 

We were asked about energy and know both caps have the same voltage…makes sense to rewrite the energy 

equation in terms of voltage to simplify the comparison! 

𝑈 =
1

2
𝑄Δ𝑉 =

Δ𝑉2𝐶

2
 

The larger cap should have more energy when they have the same potential difference. 

 

6b)  

𝐶𝑒𝑞 =
10

7
𝐶 ≈ 1.429𝐶 

 

6c) Once we know 𝐶𝑒𝑞 , we can find charge on the equivalent capacitor is 𝑄𝑒𝑞 =
10

7
ℰ𝐶. 

I don’t know the battery voltage ℰ yet…but I do know the charge on the equivalent circuit happens to be the charge 

on 2𝐶 in this scenario (since 𝐶𝑒𝑞  came from a series combination of 2𝐶 and the other caps). 

Since I know charge on 2𝐶, it makes sense to rewrite the energy equation in terms of charge. 

𝑈2 =
1

2
𝑄2Δ𝑉2 =

𝑄2
2

2𝐶2

 

𝑈2 =
(
10
7

ℰ𝐶)
2

2(2𝐶)
 

𝑈2 =
   
100
49

   

4
ℰ2𝐶 

𝑈2 =
25

49
ℰ2𝐶 

ℰ = √
49𝑈2

25𝐶
 

𝓔 =
𝟕

𝟓
√

𝑼𝟐

𝑪
 

𝓔 = 𝟏. 𝟒𝟎𝟎√
𝑼𝟐

𝑪
 

 

 

 

 

 

  



8a) I find it easiest to split the loop into two pieces (similar to workbook problem 28.16). 

Notice the currents on the 𝑧-axis for each ½-loop run in opposite directions…the sum is equivalent to the original… 

For each ½-loop, curl your fingers (of right hand) in the direction of current; right thumb points in direction of mag 

moment. 

𝜇 𝑡𝑜𝑡𝑎𝑙 = 𝜇𝑥(+𝑖̂) + 𝜇𝑦(+𝑗̂) 

 

8b) You are given the output of a vector equation (resultant magnitude) and asked to find an input. 

Follow the same procedure as always for determining a vector magnitude but use a variable for the unknown 

quantity (in this case 𝑖). 

𝜏 = 𝜇 𝑡𝑜𝑡𝑎𝑙 × �⃗� 𝑒𝑥𝑡  

𝜏 = (𝜇𝑥𝑖̂ + 𝜇𝑦𝑗̂) × 𝐵𝑒𝑥𝑡�̂� 

𝜏 = 𝜇𝑦𝐵𝑒𝑥𝑡(+𝑖̂) + 𝜇𝑥𝐵𝑒𝑥𝑡(−𝑗̂) 

In this special case, we know 

𝜇𝑥 = 𝜇𝑦 = 𝑁𝑖𝐴 =
𝑁𝑖𝑠2

2
 

Plug in and factor out: 

𝜏 =
𝑁𝑖𝑠2𝐵𝑒𝑥𝑡

2
(𝑖̂ − 𝑗̂) 

Now get the magnitude… 

𝜏 = ‖𝜏 ‖ =
√2𝑁𝑖𝑠2𝐵𝑒𝑥𝑡

2
 

Solve for current.  When plugging in numbers, watch those units!!! 

𝒊 = 𝟓𝟒𝟐 𝐦𝐀 

 

MOST COMMON ISSUES: 
1) Just because 𝜏 = 𝜇 × �⃗� 𝑒𝑥𝑡  one cannot say 𝜏 = 𝜇𝐵𝑒𝑥𝑡 .   

Get the full vector for 𝜇 , do the cross-product, then take the magnitude! 

2) In this problem, the area of the loop before bending is 𝑠2. 

HOWEVER, the area VECTOR is 𝐴 =
𝑠2

2
𝑖̂ +

𝑠2

2
𝑗̂. 

Notice the magnitude of the area vector is 𝐴 = √(
𝑠2

2
)
2

+ (
𝑠2

2
)
2

=
√2

2
𝑠2. 
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9a) The force equation for magnetic forces is 𝐹 = 𝑞𝑣 × �⃗� 𝑒𝑥𝑡 . 

Due to the cross product, this force is necessarily perpendicular to velocity (regardless of the orientation of �⃗� 𝑒𝑥𝑡)! 

A magnetic force can change the direction of charge velocity, but not the size of it!!! 

 

The force equation for electric forces is 𝐹 = 𝑞�⃗� . 

Notice this can be in any direction relative to charge velocity (parallel, perpendicular, or both). 

In this special case, electron between vertically oriented plates, electric field & force point horizontally. 

In this case, �⃗�  is anti-parallel while 𝐹 = −𝑒�⃗�  force is parallel.   

We require a force component parallel to velocity force if speed is increasing…here only �⃗�  can provide that. 

 

9b) From the previous question, we know the electric force is tangent to the direction of motion. 

Therefore the deflection force must arise from only the magnetic field (in this special case). 

𝐹 = 𝑞𝑣 × �⃗� 𝑒𝑥𝑡  

WATCH OUT!  Charge is negative (using an electron). 

𝐹 = (−𝑒)𝑣 × �⃗� 𝑒𝑥𝑡  

Furthermore we know deflection force is out of the page (𝐹 = 𝐹�̂�) while the charges moves to the right (𝑣 = 𝑣𝑖̂). 

Using a bit of trial and error gives  

�⃗� 𝑒𝑥𝑡 = 𝐵𝑒𝑥𝑡(−𝑗̂) 

 

9c) The path would be circular if no electric field was present. 

The path would be a straight line if no magnetic field was present. 

The path would be parabolic if no magnetic field was present AND charge motion was perpendicular to field. 

None of these conditions are met! 

The best answer is none of the other answers is correct. 

 

9d) The simplest way to get a good understanding of the trajectory is to write a simulation. 

Our standard method from lab uses the Euler-Cromer Method. 

Obviously there would be declaring a bunch of constants (including computing �⃗�  from givens Δ𝑉 & 𝑑). 

I would compute electric force outside of the loop (since �⃗�  and thus 𝐹 𝐸 is constant between the plates). 

Inside the loop I would first compute both 𝐹 𝐵 = 𝑞𝑣 × �⃗� 𝑒𝑥𝑡  and 𝐹 𝑁𝐸𝑇 = 𝐹 𝐸 + 𝐹 𝐵. 

Then update momentum (𝑏𝑎𝑙𝑙.𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 += 𝐹 𝑁𝐸𝑇 × 𝑑𝑡)…comes from 𝐹 𝑁𝐸𝑇 =
𝑑𝑝 

𝑑𝑡
. 

Next update position (𝑏𝑎𝑙𝑙. 𝑝𝑜𝑠 += 𝑏𝑎𝑙𝑙.
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑏𝑎𝑙𝑙.𝑚𝑎𝑠𝑠
× 𝑑𝑡)…comes from 𝑟 =

𝑑�⃗� 

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑝 

𝑚
). 

 

Note: if you code it up, the hardest part comes when thinking about the sizes of all the numbers.  Think of all those 

wildly varying powers of 10 on all the constants.  Doing some paper and pencil work to figure out the rough sizes of 

all the numbers is potentially useful in getting ballpark numbers for a required dt.  

 

I initially ran my loop for about 5 time steps with print statements to check my 

computations.  From there I revised my constants until the simulation was both visible and 

running at a decent speed. 

 

At right is a screen shot I made using Δ𝑉 = 500 nV, 𝑑 = 1 m, 𝐵𝑒𝑥𝑡 = 10 nT, 𝑣 = 100
m

s
,

𝑑𝑡 = 10 ns, & sim_speed=1.  While this speed is ridiculously low, I can easily scale up 

the speed while scaling fields commensurately.  Once done, I could analyze more realistic 

problems.  Every set of numbers gives a different trajectory!   

Top View 


