
163fa22t3aSoln 
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1a) Just after the switch is closed, the inductor preserves its previous state (zero current). 

Since the bottom right resistor is in series with the inductor, it also has zero current. 

 

1b) ANSWER is 
𝓔

𝟓𝑹
. 

After a long time with the switch in the closed position, the inductor acts like a short. 

The circuit can be redrawn as shown in the set of figures below. 

Notice total current through the battery is 
2ℰ

5𝑅
. 

Only half of this current flows through the bottom right resistor. 

 

1c) ANSWER is 
𝓔

𝟓𝑹
. 

Upon re-opening the switch, the inductor preserves its current from the instant before the switch is re-opened. 

In this case, that implies the current in the inductor remains at 
ℰ

5𝑅
. 

 

1d) Upon reopening the switch, the circuit is effectively reduced to the loop 

containing the inductor and the two 3𝑅 resistors (shown in red at right). 

Notice, the two resistors are now in series! 

The time constant is 

𝝉 =
𝑳

𝟔𝑹
 

1e) For this scenario: 

 The 𝑡 = 0− state is switch closed for a long time. 

 The 𝑡 = 0+ state is just after the switch is re-opened. 

 The 𝑡 = ∞ state is after the inductor has been fully drained of energy. 

The initial current through each resistor in series with the inductor is  

𝑖 =
ℰ

5𝑅
 

The initial voltage across the bottom right resistor is 

Δ𝑉3𝑅 = 𝑖(3𝑅) 

Δ𝑉3𝑅 =
3

5
ℰ 

The final voltage across all circuit elements is zero. 

 

Δ𝑉3𝑅(𝑡) =
3

5
ℰ exp (−

6𝑅𝑡

𝐿
) 

Note: if you are unfamiliar with what exp() means…it is simply a different way of writing 𝑒(). 

It is used whenever the term n the exponent is so busy things are hard to read. 

In this case exp (−
6𝑅𝑡

𝐿
) = 𝑒−6𝑅𝑡/𝐿. 

3𝑅 

𝑅 

𝐿 = short 

ℰ 

3𝑅 

3

2
𝑅 

𝑅 ℰ 

5

2
𝑅 

ℰ 

3𝑅 

𝑅 

𝐿 

ℰ 

3𝑅 



2a) Capacitors dominate the circuit at low frequencies. 

I remember it this way, at low frequencies, the capacitors have ample time to almost fully charge (thus dramatically 

impeding current flow). 

 

2b) We know impedance is a minimum at 

resonance (at resonance 𝑋𝐿 = 𝑋𝐶  giving 𝑍 = 𝑅). 

Circuits 1 & 3 have the lowest resonance 

frequencies. 

 

2c) We know the resonance (angular) frequency 

condition is 

𝜔0 =
1

√𝐿𝐶
 

Rearranging gives 

𝐿 =
1

𝜔0
2𝐶

 

We were told all circuits employ identical 𝐶. 

Largest resonance frequency implies smallest 𝐿. 

𝑳𝟐 < 𝑳𝟏 = 𝑳𝟑 

 

2d) We know impedance is a minimum at resonance (at resonance 𝑋𝐿 = 𝑋𝐶 giving 𝑍 = 𝑅). 

𝑅1(kΩ) 𝑅2(kΩ) 𝑅3(kΩ) 

5.00 2.50 7.50 
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3a) I used 

𝐼 = ∫ 𝐽 ∙ 𝑑𝐴
2𝑅

𝑅

 

𝐼 = ∫
𝛼

�̃�3
2𝜋�̃�𝑑�̃�

2𝑅

𝑅

 

 

𝐼 = 2𝜋𝛼 [−
1

�̃�
]
𝑅

2𝑅

 

From there I solved for 𝛼 and found 

𝜶 =
𝑰𝑹

𝝅
 

3b) For the magnetic field to be zero in the outermost region (region 5) we know total current enclosed must be zero. 

In this case we know the current in the outer shell must be the same size as the inner shell (𝐼) running in the opposite 

direction (out of the page). 

Since this current is uniformly distributed we know 

𝐽 =
𝐼

𝜋(5𝑅)2 − 𝜋(3𝑅)2
�̂� 

 

𝐽 =
𝐼

16𝜋𝑅2
�̂� 

Note: technically, current density is a vector so I suppose we should probably include the �̂�. 

This might be the only instance I can think of where I’d let you omit direction (even though I probably shouldn’t).  

 

3c) No current enclosed, no mag field. 

 

3d) I used 

𝐵1(2𝜋𝑟) = 𝜇0∫
𝛼

�̃�3
2𝜋�̃�𝑑�̃�

𝑟

𝑅

 

I wrote up the final answer in two forms 

𝐵1 =
𝜇0𝛼

𝑟
(
1

𝑅
−
1

𝑟
) or𝑩𝟏 =

𝝁𝟎𝑰

𝟐𝝅𝒓
∙ 𝟐 (𝟏 −

𝑹

𝒓
) 

I like the second form (without the 
𝜇0𝐼

2𝜋𝑟
 factored out) because it makes it easy to check the boundary condition 

against the answer to the next part.  All I did was back sub in the value for 𝛼 determine in part a… 

 

3e) Don’t over think it.  We are outside a cylindrical object carrying total current 𝐼. 

𝐵2 =
𝜇0𝐼

2𝜋𝑟
 

Do be careful to distinguish between 𝑟 (a variable radial position between the two shells) and 𝑅 or 2𝑅 (the constant 

inner and outer radii of the inner shell). 

 

3f) I used 

𝐵4(2𝜋𝑟) = 𝐵1 − 𝜇0𝐼
𝐴𝑜𝑓𝑜𝑢𝑡𝑒𝑟𝑠ℎ𝑒𝑙𝑙𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑𝑏𝑦𝐴𝑚𝑝𝑒𝑟𝑖𝑎𝑛𝑙𝑜𝑜𝑝

𝐴𝑡𝑜𝑡𝑎𝑙𝑜𝑓𝑜𝑢𝑡𝑒𝑟𝑠ℎ𝑒𝑙𝑙
 

𝐵4 =
𝜇0𝐼

2𝜋𝑟
(1 −

𝑟2 − 9𝑅2

16𝑅2
) 

Again I choose this form since it makes it easy to compare to the previous part’s answer at the boundary. 

 

 



4a) Out of the page magnetic field at 𝐏 implies Counter-Clockwise current. 

 

4b) Out of the page magnetic field at 𝐏′ implies current to the right in the horizontal segment. 

 

4c) Looking at the upper coil, we have ¾ of a small circle plus ¼ of a big circle. 

The straight line segments produce zero contribution at 𝐏 since they are directed radially away 

and radially towards. 

𝐵𝑢𝑝𝑝𝑒𝑟 =
1

4
∙
𝜇0𝑖

2(2𝑅)
+
3

4
∙
𝜇0𝑖

2(𝑅)
 

𝐵𝑢𝑝𝑝𝑒𝑟 =
7

16
∙
𝜇0𝑖

𝑅
= 0.4375

𝜇0𝑖

𝑅
 

We were told 𝐵𝑢𝑝𝑝𝑒𝑟 = 𝐵 and to solve for 𝑖. 

𝒊 =
𝟏𝟔

𝟕
∙
𝑩𝑹

𝝁𝟎
≈ 𝟐. 𝟐𝟗

𝑩𝑹

𝝁𝟎
 

 

4d) In the lower wire only the horizontal segment contributes to the field at 𝐏′.  

The segments going out to ∞ produce zero contribution at 𝐏′ since they are directed radially away and radially 

towards. 

𝐵𝑙𝑜𝑤𝑒𝑟 =
𝜇0𝑖

4𝜋𝑎
(sin 𝜃𝑓 − sin 𝜃𝑖) 

In this expression we know 𝑎 is the pistance from 𝐏′ to the wire along the perpendicular bisector (distance 𝑅). 

Angles are measured from 𝐏′ to the ends of the wire segment with the angle to the perpendicular bisector being zero. 

Using the triangle with sides 𝑅&3𝑅 and SOH CAH TOA one finds the 70.53° angle shown in the figure. 

𝐵𝑙𝑜𝑤𝑒𝑟 =
𝜇0𝑖

4𝜋𝑅
(sin 70. 53° − sin 0°) ≈ 0.07503

𝜇0𝑖

𝑅
 

Taking the ratio gives 

𝑟𝑎𝑡𝑖𝑜 =
𝐵𝑢𝑝𝑝𝑒𝑟

𝐵𝑙𝑜𝑤𝑒𝑟
 

𝑟𝑎𝑡𝑖𝑜 =
0.4375

𝜇0𝑖
𝑅

0.07503
𝜇0𝑖
𝑅

 

𝒓𝒂𝒕𝒊𝒐 ≈ 𝟓. 𝟖𝟑 
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𝐏 

𝑷′ 



5a) As the rod moves it reduces flux out of the page through the loop. 

Induced current should try to replace the lost out of the page flux by 

producing a field that is also out of the page. 

Current in the loop must flow counter-clockwise. 

In the rod current flows downwards. 

 

5b) We want current as a function of time. 

𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =
ℰ𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙

𝑅
=
𝐵⊥𝐿𝑣

𝑅
 

All we need to do is determine 𝑣(𝑡) and we have it… 

 

Consider the FBD of the rod shown below at right. 

I included 𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑  and 𝐵𝑒𝑥𝑡  on the figure so you could see how a right hand 

rule gives magnetic force �⃑�𝐵 to the left. 

 

Why is the arrow for �⃑�𝐵 smaller than the arrow for the applied force �⃑�? 

Initially the rod moves slowly (it accelerates from rest). 

The induced EMF in the rod is 

ℰ𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐵⊥𝐿𝑣 

We expect a small ℰ𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙 . 

This produces a small 𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 . 

This causes a small magnetic force magnitude 𝐹𝐵 = 𝑖𝐿𝐵𝑒𝑥𝑡 sin(𝐴𝑁𝐺𝐿𝐸). 

Here 𝐴𝑁𝐺𝐿𝐸 is the angle between �⃑⃑�𝑒𝑥𝑡  and �⃑⃑� (direction of current flow). 

Putting together all the pieces into a force equation gives 

𝐹 − 𝐹𝐵 = 𝑚𝑎 

𝐹 − 𝑖𝐿𝐵𝑒𝑥𝑡 sin(𝐴𝑁𝐺𝐿𝐸) = 𝑚𝑎 

𝐹 − 𝑖𝐿𝐵 sin(90°) = 𝑚𝑎 

𝐹 −
ℰ𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙

𝑅
𝐿𝐵 = 𝑚𝑎 

𝑭 −
𝑩𝟐𝑳𝟐

𝑹
𝒗 = 𝒎𝒂(𝐜𝐚𝐧𝐠𝐞𝐭𝒗𝑻𝐛𝐲𝐬𝐞𝐭𝐭𝐢𝐧𝐠𝒂 = 𝟎) 

𝐹

𝑚
−
𝐵2𝐿2

𝑚𝑅
𝑣 =

𝑑𝑣

𝑑𝑡
 

−
𝐵2𝐿2

𝑚𝑅
(𝑣 −

𝐹𝑅

𝐵2𝐿2
) =

𝑑𝑣

𝑑𝑡
 

−
𝐵2𝐿2

𝑚𝑅
𝑑𝑡 =

𝑑𝑣

𝑣 −
𝐹𝑅
𝐵2𝐿2

 

−
𝑩𝟐𝑳𝟐

𝒎𝑹
∫ 𝒅𝒕
𝒕𝒇

𝒕𝒊

= ∫
𝒅𝒗

𝒗 −
𝑭𝑹
𝑩𝟐𝑳𝟐



𝒗𝒇

𝒗𝒊=𝟎

(𝐜𝐚𝐧𝐠𝐞𝐭𝝉𝐮𝐬𝐢𝐧𝐠𝐮𝐧𝐢𝐭𝐚𝐧𝐚𝐥𝐲𝐬𝐢𝐬) 

 

Solution continues on the next page…  

𝑣 

𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 

𝐹 

𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 

𝐹𝐵 

𝐵𝑒𝑥𝑡  

𝐵𝑒𝑥𝑡 
𝑎 

𝑥 

𝑦 

FBD of Rod 



From here the integration is straightforward.  Solve for 𝑣𝑓 which is then identified as 𝑣(𝑡). 

Alternatively, one could identify this one of the special differential equations when we can use  

𝑋(𝑡) = 𝑋𝑓 + (𝑋𝑖 − 𝑋𝑓)𝑒
−𝑡/𝜏 

If using this technique, one must notice the term 
𝐵2𝐿2

𝑚𝑅
 in the last line has units of 

1

seconds
. 

Since 𝜏 has units of seconds, we see 𝝉 =
𝒎𝑹

𝑩𝟐𝑳𝟐
! 

Similarly, the fifth line above can be used to show 𝑣𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = 𝒗𝑻 =
𝑹𝑭

𝑩𝟐𝑳𝟐
 

𝒗(𝒕) = 𝒗𝑻 (𝟏 − 𝒆
−
𝒕
𝝉) 

 

 

Going back to the start of the problem: 

𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =
ℰ𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙

𝑅
 

𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =
𝐵⊥𝐿𝑣

𝑅
 

𝑖𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =
𝐵⊥𝐿

𝑅
∙
𝑹𝑭

𝑩𝟐𝑳𝟐
(𝟏 − 𝒆−

𝒕
𝝉) 

𝒊𝒊𝒏𝒅𝒖𝒄𝒆𝒅 =
𝑭

𝑩𝑳
(𝟏 − 𝒆−

𝒕
𝝉) where𝝉 =

𝒎𝑹

𝑩𝟐𝑳𝟐
 

 

  



6abc) The wires produce magnetic fields in the directions shown in the figure. 

 

6a)  𝐵𝑥 > 0  

 

6b) 𝐵𝑦 > 0  

 

6c)  |𝐵𝑥| < |𝐵𝑦|  

 

7a) When the switch is in position 𝐁, we have an 𝐿𝐶 oscillator circuit. 

𝜔0 =
1

√𝐿𝐶
 

2𝜋

𝕋
=

1

√𝐿𝐶
 

𝕋 = 2𝜋√𝐿𝐶 

𝕋 ≈ 𝟏𝟔𝟐. 𝟐𝛍𝐬 

7b) The inductor preserves its current as the switch is changed. 

Just before switching, the inductor was in steady state with current flowing 

downwards.  Just after switching, current still flows the same way (see figure). 

This current direction implies electron flow is the opposite direction. 

We expect electrons will initially build up on the top plate of the capacitor. 

Initially the bottom plate of the capacitor is positively charged. 

 

7c) With zero resistance in the 𝐿𝐶 oscillator loop, energy is conserved during oscillations (and they go on forever). 

Note: in the real world, the tiny resistance of the wires does cause energy loss. 

As a result, in the real world oscillations will not go on forever. 

That said, if resistance in the wires is very small, the following statement is a pretty solid approximation. 

𝑈𝐶𝑚𝑎𝑥 = 𝑈𝐿𝑚𝑎𝑥 = 𝑈 

1

2
∙
𝑄𝑚𝑎𝑥
2

𝐶
=
1

2
∙ 𝐿𝑖𝑚𝑎𝑥

2 = 𝑈 

𝑄𝑚𝑎𝑥 = 𝑖𝑚𝑎𝑥√𝐿𝐶 = √2𝑈𝐶 

𝑸𝒎𝒂𝒙 ≈ 𝟏𝟕. 𝟑𝟏𝛍𝐂 

7d) We know 𝑖𝑚𝑎𝑥 in this circuit is the steady state current just before the switch was flipped (𝑖𝑚𝑎𝑥 =
ℰ

𝑅
)! 

𝑈𝐿𝑚𝑎𝑥 =
1

2
∙ 𝐿𝑖𝑚𝑎𝑥

2  

𝑖𝑚𝑎𝑥 = √
2𝑈𝐿𝑚𝑎𝑥
𝐿

 

ℰ

𝑅
= √

2𝑈𝐿𝑚𝑎𝑥
𝐿

 

𝓔 = 𝑹√
𝟐𝑼𝑳𝒎𝒂𝒙
𝑳

≈ 𝟑𝟏𝟓𝐕 

𝟏 

𝟐 

𝑥 

𝑦 

𝑩𝟐 

𝑩𝟏 

𝑅 

𝐶 𝐿 

ℰ 

𝐀 𝐁 

Initial 

current 

direction 



8a) The capacitor is dominating this circuit. 

The phase angle equation is 

𝜙 = tan−1 (
𝑋𝐿 − 𝑋𝐶
𝑅

) 

A negative phase angle implies 𝑋𝐶 > 𝑋𝐿. 

Note: this implies we must be operating at a frequency below resonance… 

 

8b) Current leads source voltage. 

We know the phrase ELI the ICE organism. 

Use the word ICE because it contains the letter C (and we know the capacitor is dominating the circuit). 

 

8c) Increasing capacitance OR increasing function generator frequency increases current amplitude. 

Think: we know current amplitude is largest at resonance. 

Increasing the function generator operating frequency should get us closer to resonance (when 𝐶 dominates). 

How do I know this?  Recall the Note: from part a… 

Think: We know capacitive reactance is  𝑋𝐶 =
1

𝜔𝐶
. 

If we increase capacitance, capacitive reactance decreases and the capacitor is less dominant. 

When we do this, we shift resonance frequency closer to the operational frequency! 

Another weird way to think of it: if we use a bigger 𝐶 it gets less full of charge (percentagewise) and thus impedes 

current flow slightly less. 

 

8d) I suppose I see two ways to approach this (but both require essentially the same mathematics). 

 Method 1: Use the phase angle equation to find 𝜔 (and thus 𝑓). 

 Method 2: Use the phase triangle to solve for 𝑍.  Use this 𝑍 to determine 𝜔 (and thus 𝑓). 

HEY YOU! Remember the distinction between resonance frequency (𝜔0 =
1

√𝐿𝐶
) and operational frequency (𝜔)! 

SIDE NOTE: I find it easier to first solve for 𝜔 to avoid dealing with a crapload of 2𝜋’s in my work. 

tan𝜙 =
𝑋𝐿 − 𝑋𝐶
𝑅

 

𝑅 tan𝜙 = 𝑋𝐿 − 𝑋𝐶  

𝑅 tan𝜙 = 𝜔𝐿 −
1

𝜔𝐶
 

Multiply all terms by 𝜔𝐶 to get rid of the fraction… 

𝜔𝑅𝐶 tan𝜙 = 𝜔2𝐿𝐶 − 1 

Divide all by 𝐿𝐶 to simplify the ensuing quadratic formula (also easier for checking units IMHO). 

𝜔
𝑅

𝐿
tan𝜙 = 𝜔2 −

1

𝐿𝐶
 

𝜔
𝑅

𝐿
tan𝜙 = 𝜔2 − 𝜔0

2 

0 = 𝜔2 − 𝜔
𝑅

𝐿
tan𝜙 − 𝜔0

2 

Use quadratic formula with 𝑎 = 1, 𝑏 = −
𝑅

𝐿
tan𝜙, and 𝑐 = −𝜔0

2. 

𝜔 =
−(−

𝑅
𝐿
tan𝜙) ± √(−

𝑅
𝐿
tan𝜙)

2

− 4(−𝜔0
2)(1)

2(1)
 

Continues on the next page… 

𝑋𝐿 − 𝑋𝐶 

𝑅 

𝑍 

𝜙 



Sometimes I like to reduce the clutter by moving that 2 into every term in the numerator. 

Notice this requires dividing by 4 for terms inside the square root… 

𝜔 = 
𝑅

2𝐿
tan𝜙 ± √

𝑅2

4𝐿2
tan2 𝜙 + 𝜔0

2 = 
𝑅

2𝐿
tan𝜙

(

 
 
1 ± √+

𝜔0
2

𝑅2

4𝐿2
tan2 𝜙

)

 
 

 

Side math to simplify computation: 

𝑅

2𝐿
tan𝜙 = −1.192511 × 105

rad

s
 

I recognize the units as being 
1

s
 because I know the 

time constant from 𝑅𝐿 transients is 𝜏 =
𝐿

𝑅
… 

𝑅2

4𝐿2
tan2 𝜙 = 1.422083 × 1010

rad2

s2
 𝜔0

2 =
1

𝐿𝐶
= 1.5015015 × 109

rad2

s2
 

WATCH OUT FOR THAT MINUS SIGN!  The phase angle was negative… 

Notice I get the correct units of 
rad

s
 on the output 𝜔. 

Because I notice this, I feel confident leaving units off my intermediate work… 

𝜔 = −1.192511 × 105 ± √1.422083 × 1010 + 1.5015015 × 109 

𝜔 = −1.192511 × 105 ± 1.253887 × 105 

YIKES!  Notice the subtraction above causes a loss of two sig figs! 

Thus the hint in the problem statement to include extra sig figs on your intermediate answers. 

In this case, use the positive root since we require 𝜔 > 0. 

𝜔 = 6.138 × 103
rad

s
 

Check: with a negative phase angle, the result for 𝜔 had better be less than 𝜔0 =
1

√𝐿𝐶
= 3.87 × 104

rad

s
…it is! 

Now I can divide this result by 2𝜋 to get the frequency in units of Hz. 

𝒇 = 𝟗𝟕𝟕Hz 

 

 

 

 

 

 

 

 

 

 

 


