AFTER I GIVE THE SIGNAL TO BEGIN YOU CAN REMOVE THIS SHEET. DO NOT TURN IT IN!
163fa23t1a - Once the exam has officially started, remove the top sheet. The remaining sheets comprise your exam. It is each student's individual responsibility to ensure the instructor has received her or his completed exam. Any exams not received by the instructor earn zero points. Smart watches, phones, or other devices (except scientific calculators) are not permitted during the exam.
$e=1.602 \times 10^{-19} \mathrm{C}$
$k=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$
$c=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$\varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$h c \approx 1240 \mathrm{eV} \cdot \mathrm{nm}$
$\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{\mathrm{~A}}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$\vec{F}=q \vec{E}$
$\vec{F}_{1 o n 2}=\frac{k q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{1 \text { to2 }}$
$k=\frac{1}{4 \pi \varepsilon_{0}}$
$\Delta x=v_{i x} t+\frac{1}{2} a_{x} t^{2}$
$v_{f x}^{2}=v_{i x}^{2}+2 a_{x} \Delta x$
$\vec{E}=\frac{k q}{r^{2}} \hat{r}$
$V=\frac{k q}{r}$
$U_{12}=\frac{k q_{1} q_{2}}{r_{12}}$
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\varepsilon_{0}}$
$q_{e n c}=\int \rho d V$
$E_{\| \text {plates }}=\frac{|\Delta V|}{d}=\frac{\sigma}{\varepsilon_{0}} \quad E_{\text {plate }}=\frac{\sigma}{2 \varepsilon_{0}}$
$E_{\text {ring }}=\frac{k Q z}{\left(R^{2}+z^{2}\right)^{3 / 2}}$
$V_{\text {ring }}=\frac{k Q}{\left(R^{2}+z^{2}\right)^{1 / 2}}$
$E_{x}=-\frac{d V}{d x}$
$V_{b}-V_{a}=-\int_{a}^{b} \vec{E} \cdot d \vec{s}$
$\Delta U=q \Delta V$
$U_{C}=\frac{1}{2} Q_{C} \Delta V_{C}$
$Q_{C}=\Delta V_{C} C$
$I_{C}=-C \frac{d V_{C}}{d t}$
$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots$
$C_{e q}=C_{1}+C_{2}+\cdots$
$C_{\text {plates }}=\frac{\varepsilon_{0} A}{d}$
$C^{\prime}=\kappa C$
$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdot \cdot$
$R=\frac{\rho L}{A}$
$\rho=\rho_{0}(1+\alpha \Delta T)$
$R_{e q}=R_{1}+R_{2}+\cdots$
$\mathcal{P}_{R}=I_{R} \Delta V_{R}$
$X(t)=X_{f}+\left(X_{i}-X_{f}\right) e^{-t / \tau}$ where $\tau=R C$ or $\frac{L}{R}$
$\Delta V_{R}=I_{R} R$
$\vec{F}=q \vec{v} \times \vec{B}_{\text {ext }}$
$\vec{F}=I \int d \vec{s} \times \vec{B}_{e x t}$
$\vec{\tau}=\vec{\mu} \times \vec{B}_{e x t}$
$\vec{\mu}=N I \vec{A}$
$U=-\vec{\mu} \cdot \vec{B}_{\text {ext }}$
$B_{s o l}=\frac{\mu_{0} N I}{L}$
$B_{\text {ring }}=\frac{\mu_{0} I r^{2}}{2\left(r^{2}+z^{2}\right)^{3 / 2}} \quad B_{\text {straight }}=\frac{\mu_{0} I}{2 \pi a}$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enc }}$
$E M F=-N \frac{d}{d t} \Phi_{B}$
$I_{e n c}=\int \vec{J} \cdot d \vec{A}$
$\vec{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{s} \times \hat{r}}{r^{2}}$
$\Phi_{B}=\int \vec{B} \cdot d \vec{A}$
$E M F=B_{\perp} L v$
$L=\frac{\Phi_{B}}{I}$
$U_{L}=\frac{1}{2} L I^{2}$
$\frac{\Delta V_{2}}{\Delta V_{1}}=\frac{N_{2}}{N_{1}}$
$\Delta V_{L}=-L \frac{d I_{L}}{d t}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad \tan \phi=\frac{X_{L}-X_{C}}{R}$
$X_{L}=\omega L$
$X_{C}=\frac{1}{\omega C}$
$V_{\text {source }}=V_{0} \sin \omega t$
$i=i_{\text {max }} \sin (\omega t-\phi)$
$\Delta V_{R \max }=i_{\max } R$
$\Delta V_{L \text { max }}=i_{\text {max }} X_{L}$
$\Delta V_{C \max }=i_{\max } X_{C}$
$V_{\text {source } \max }=i_{\max } Z$
$\Delta V_{\max }=\frac{\Delta V_{p k-p k}}{2}$
$\Delta V_{r m s}=\frac{\Delta V_{\max }}{\sqrt{2}}$
$\omega_{0}=\frac{1}{\sqrt{L C}}$
$\mathcal{P}_{\text {avg }}=I_{r m s} \Delta V_{r m s} \cos \phi=I_{r m s}^{2} R$
$c=f \lambda$
$k=\frac{2 \pi}{\lambda}$
$\omega=2 \pi f=\frac{2 \pi}{\mathbb{T}}$
$\vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{0}}$
$I_{\text {avg }}=S_{\text {avg }}=\frac{E_{\max } B_{\text {max }}}{2 \mu_{0}}=\left(\frac{1}{c}\right) \frac{E_{\text {max }}^{2}}{2 \mu_{0}}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$\frac{E_{\max }}{B_{\max }}=c$
$E_{\gamma}=h f=\frac{h c}{\lambda}$
Rad. Pressure $=\frac{\text { Force }}{\text { Area }}=\frac{S_{a v g}}{c}$
Photon momentum $=p_{\gamma}=\frac{E_{\gamma}}{c}$

Material	Resistivity at $20^{\circ} \mathrm{C}$ (in SI units)	Temp. Coefficient (in SI units)
Silver	1.62×10^{-8}	4.1×10^{-3}
Copper	1.69×10^{-8}	4.3×10^{-3}
Aluminum	2.75×10^{-8}	4.4×10^{-3}
Nichrome	1.00×10^{-6}	0.4×10^{-3}
Carbon	3.5×10^{-5}	-0.5×10^{-3}
Germanium	0.46	-48×10^{-3}

Rip off the eqt'n sheet and put your name on this page. NAME:
Three charges $\left(q_{1}=-e, q_{2}=2 e, \& q_{3}=e\right)$ are aligned perfectly along the x-axis. All charges have equal mass m. Charges $1 \& 2$ are fixed in place. Charge 1 is distance $4 d$ from the origin. Charge 2 is distance $3 d$ from the origin. Charge 3 is initially very far

1b) Suppose the experiment was repeated but the positions of charges $1 \& 2$ were swapped.
Which of the following statements is true? Circle the best answer.

It is no longer possible for q_{3} to reach the origin.	Charge q_{3} could still reach the origin; less initial speed is required.	Impossible to determine without more information
Charge q_{3} could still reach the origin; more initial speed is required.	Charge q_{3} could still reach the origin; the same initial speed is required.	

Consider the code snippet shown at right. Your goal is to add lines of code which will animate the motion of the charged ball during its first 5 seconds of motion while it is affected by an electric field and gravity.

Note: when I tested my code I found I had to finish LINE 15 plus 5 additional lines of code.

2a) What should be typed in LINE 15 to compute the electric force?

$\mathbf{L I N E}$	F_elec $=$
$\mathbf{1 5}$	_-

```
```

```
Web VPython 3.2
```

```
```

Web VPython 3.2

```
```

```
Web VPython 3.2
#E_field is a UNIFORM electric field vector
#E_field is a UNIFORM electric field vector
#E_field is a UNIFORM electric field vector
E_field = vec(7.832, -4.516, -6.097)
E_field = vec(7.832, -4.516, -6.097)
E_field = vec(7.832, -4.516, -6.097)
ball = sphere()
ball = sphere()
ball = sphere()
ball.m = 1.2345 #mass in units of kg
ball.m = 1.2345 #mass in units of kg
ball.m = 1.2345 #mass in units of kg
ball.q = -3.0548 #charge in units of C
ball.q = -3.0548 #charge in units of C
ball.q = -3.0548 #charge in units of C
ball.v = vec(0,0,0) #velocity in m/s
ball.v = vec(0,0,0) #velocity in m/s
ball.v = vec(0,0,0) #velocity in m/s
ball.a = vec(0,0,0) #acceleration in m/s**2
ball.a = vec(0,0,0) #acceleration in m/s**2
ball.a = vec(0,0,0) #acceleration in m/s**2
k = 8.99e9 #in units of N*m**2/C**2
k = 8.99e9 #in units of N*m**2/C**2
k = 8.99e9 #in units of N*m**2/C**2
g = 9.8 #in unis of m/s**2
g = 9.8 #in unis of m/s**2
g = 9.8 #in unis of m/s**2
#compute forces
#compute forces
#compute forces
F_elec =
F_elec =
F_elec =
F_grav = vec(0, -ball.m*g, 0)
F_grav = vec(0, -ball.m*g, 0)
F_grav = vec(0, -ball.m*g, 0)
t=0
t=0
t=0
dt=0.1
dt=0.1
dt=0.1
sim_speed = 1
sim_speed = 1
sim_speed = 1
while t<5:
while t<5:
while t<5:
    rate(sim_speed/dt)
```

```
```

 rate(sim_speed/dt)
    ```
```

```
    rate(sim_speed/dt)
```

```
```


27
28
***2b) Assuming line 15 is done correctly, use the table below to write out a set of 5 lines of code which will correctly animate the motion for the first 5 seconds. In the left column of the table, indicate the line number where each line of code should be typed.

| Line \# | Code |
| :--- | :--- |
| | |
| | |
| | |
| | |
| | |

An electron is constrained to move along the x-axis. The plot at right shows electric potential energy versus position.
***3a) Determine the largest possible force on the electron between $x=0 \rightarrow 70 \mathrm{~nm}$. Include \pm to account for direction.

| 3 a | |
| :--- | :--- |

**3b) Suppose the electron was released from rest at $x \approx 33 \mathrm{~nm}$. Describe the electron's motion in the table below.

| Which direction will the
 electron intially move? | |
| :--- | :--- |
| Will the electron reverse
 direction or not?
 If yes, at what position?
 If no, explain why not? | |

A molecule centered at the origin is modeled as a rod of length d carrying non-uniform charge density given by $\lambda=\alpha y^{5}$ where α is a positive constant. Points $\mathbf{A} \& \mathbf{B}$ are distance d from the origin (figure not to scale). To be clear, no charge is located at either point.

4a) In the boxes below, draw an arrow indicating the direction of the electric field at points $\mathbf{A} \& \mathbf{B}$. If no field is present, write "No Field" in the box.

| Direction of | | | |
| :---: | :--- | :---: | :--- |
| \vec{E} at \mathbf{A} | | Direction of
 \vec{E} at \mathbf{B} | |

4b) Which best describes the electric potential at point A. Circle the best answer.

| Positve | Negative | Zero | Impossible to determine
 without more info |
| :---: | :---: | :---: | :---: |

4c) Which best describes the electric potential at point B.

| Positve | Negative | Zero | Impossible to determine
 without more info |
| :---: | :---: | :---: | :---: |

An insulating cylindrical shell of length L, inner radius R and outer radius $3 R$ carries non-uniform charge density $\rho=\frac{\beta}{r^{2}}$. A cross-section of the shell is shown at right. You may assume $L \gg R$ for this problem.

5a) Determine the units assumed for the constant β.
**5b) Determine total charge on the rod in terms of β, L, and/or R.
**5c) Determine the electric field for radii between $R \& 3 R$.
Please leave this answer in terms of $\boldsymbol{\epsilon}_{\mathbf{0}}$ to save time!

A sphere of radius a is an insulator with total charge $-3 Q$ uniformly distributed. The insulating sphere is surrounded by a concentric conducting spherical shell carrying total charge Q with inner radius $2 a$ and outer radius $3 a$. The numbers in the figure indicate regions of interest ($\mathbf{1}$ is inside the conductor, $\mathbf{2}$ is between the conductor and insulator, etc).

6a) Determine surface charge density (if any) on the outer surface of the conductor.
6b) Determine the electric field in region 1.
Note: for electric field results, I will assume negative answers point radially inwards.
6c) Determine the electric field in region 2.
6d) Determine the electric field in region 3.

6e) Determine the electric field in region 4.
**6f) Sketch a plot of the radial component E_{r} of the electric field versus radial position (next page).
To be clear, if the field is directed inwards E_{r} should be a negative value on the plot. You may want to do this part last since it is time consuming for only 2 points.

| 6 a | |
| :--- | :--- |
| 6 b | |
| 6 c | |
| 6 f | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

This problem took me the longest. Consider attempting problems 1-6 first. Don't forget problem 8 on the next page.
Assume the charges in the figure are $q_{1}=10 \underline{0} \mu \mathrm{C}, q_{2}=30 \underline{0} \mu \mathrm{C}, \& q_{3}=-30 \underline{0} \mu \mathrm{C}$. The angle in the figure is $\theta=22.2^{\circ}$. Charges $2 \& 3$ are each 4.00 m from the origin. Figure not to scale. To be clear, q_{2} lies in the $x y$-plane while q_{3} lies in the $y z$-plane. $* * * 7$ a) Determine \hat{r}_{32} which describes the direction of displacement from q_{3} to q_{2}. *****7b) Determine the Coulomb force magnitude on \boldsymbol{q}_{1} due to the other two charges.

A rod with uniform charge distribution is bent into an arc of radius R as shown.
The rod carries unknown total charge Q.
The magnitude of the electric field at the origin is E.

Please notice part 8 b at the bottom of the page. Figure not to scale.

 ******8a) Determine Q.Answer using a decimal number with 3 sig figs times an expression involing $E \& R$.

8b) Suppose the a new arc shown at right had the same charge density as the arc in part a. How would the new electric field magnitude at the origin $\left(E^{\prime}\right)$ compare to the original electric field magnitude at the origin. Circle best answer.

| $E^{\prime}>E$ | $E^{\prime}<E$ | $E^{\prime}=E$ | Impossible to determine
 without more info |
| :--- | :--- | :---: | :---: |

***Extra Credit (only $\mathbf{3}$ points, do the rest of the test first): Consider the partial washer shown at right. Assume charge Q is uniformly distributed over the partial washer. Inner radius is R and outer radius is $3 R$ (figure not to scale).

Determine the electric field at the origin and put a box around your answer.

Credit may be obtained if you give pseudocode which could produce the result for $Q=1 \mathrm{C}$ and $R=1 \mathrm{~m}$. To get code credit, you have to be detailed about the following:

- limits chosen for your 1-2 loops
- conditions for the if statements
- how $d q$ is computed

Page intentionally left blank for scratch paper.

Page intentionally left blank for scratch paper.

