AFTER I GIVE THE SIGNAL TO BEGIN YOU CAN REMOVE THIS SHEET. DO NOT TURN IT IN!

163fa23t3b - Once the exam has officially started, remove the top sheet. The remaining sheets comprise your exam. It is each student's individual responsibility to ensure the instructor has received her or his completed exam. Any exams not received by the instructor earn zero points. Smart watches, phones, or other devices (except scientific calculators) are not permitted during the exam.

points. Smart watches, phones, of other de	vices (except scientific calculators	s) are not permitted during the exa		_	
$e = 1.602 \times 10^{-19} \mathrm{C}$	$k = 8.99 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$	$c = 3.00 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}$	$\varepsilon_0 = 8.85$	$\times 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}$	
$h = 6.626 \times 10^{-34} \mathrm{J \cdot s}$	$hc \approx 1240 \text{ eV} \cdot \text{nm}$	$\mu_0 = 4\pi \times 10^{-7} \frac{\text{T} \cdot \text{m}}{\text{A}}$	1 eV = 1.	$602 \times 10^{-19} \text{J}$	
$m_p = 1.673 \times 10^{-27} \text{ kg}$	$m_e = 9.11 \times 10^{-31} \text{ kg}$				
$\vec{F} = q\vec{E}$	$k = \frac{1}{4\pi\varepsilon_0}$	$\Delta x = v_{ix}t + \frac{1}{2}a_xt^2$	$v_{fx}^2 = v_{ix}^2 -$	$+2a_x\Delta x$	
$\vec{F}_{1on2} = rac{kq_1q_2}{r_{12}^2} \hat{r}_{1to2}$	$\vec{E} = \frac{kq}{r^2}\hat{r}$	$V = \frac{kq}{r}$	$U_{12} = \frac{kq_1q_2}{r_{12}}$	<u>2</u>	
$\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0}$	$q_{enc} = \int \rho dV$	$E_{\parallel plates} = \frac{ \Delta V }{d} = \frac{\sigma}{\varepsilon_0}$	$E_{plate} = \frac{\sigma}{2\varepsilon}$	<u>.</u> 	
$E_{ring} = \frac{kQz}{(R^2 + z^2)^{3/2}}$	$V_{ring} = \frac{kQ}{(R^2 + z^2)^{1/2}}$	$E_x = -\frac{dV}{dx}$	$V_b - V_a = 0$	$-\int_a^b \vec{E} \cdot d\vec{s}$	
$\Delta U = q \Delta V$	$U_C = \frac{1}{2} Q_C \Delta V_C$	$Q_C = \Delta V_C C$	$I_C = -C \frac{dV}{dt}$	<u>′C</u> t	
$\frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \cdots$	$C_{eq} = C_1 + C_2 + \cdots$	$C_{plates} = \frac{\varepsilon_0 A}{d}$	$C' = \kappa C$		
$R_{eq} = R_1 + R_2 + \cdots$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$	$R = \frac{\rho L}{A}$	$\rho = \rho_0(1 +$	$+\alpha\Delta T$)	
$\Delta V_R = I_R R$	$\mathcal{P}_R = I_R \Delta V_R$	$X(t) = X_f + (X_i - X_f)e^{-t}$	$-t/\tau$ where	$\tau = RC \text{ or } \frac{L}{R}$	
$\vec{F} = q\vec{v} \times \vec{B}_{ext}$	$\vec{F} = I \int d\vec{s} \times \vec{B}_{ext}$	$\vec{\tau} = \vec{\mu} \times \vec{B}_{ext}$	$\vec{\mu} = NI\vec{A}$		
$U = -\vec{\mu} \cdot \vec{B}_{ext}$	$B_{sol} = \frac{\mu_0 NI}{L}$	$B_{ring} = \frac{\mu_0 I r^2}{2(r^2 + z^2)^{3/2}}$	$B_{straight} =$	$=\frac{\mu_0 I}{2\pi a}$	
$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc}$	$I_{enc} = \int \vec{J} \cdot d\vec{A}$	$\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}$	$\Phi_B = \int \vec{B} \cdot$	$dec{A}$	
$EMF = -N\frac{d}{dt}\Phi_B$	$EMF = B_{\perp}Lv$	$L = \frac{\Phi_B}{I}$	$U_L = \frac{1}{2}LI^2$		
$\frac{\Delta V_2}{\Delta V_1} = \frac{N_2}{N_1}$	$\Delta V_L = -L \frac{dI_L}{dt}$	$Z = \sqrt{R^2 + (X_L - X_C)^2}$	$\tan \phi = \frac{X_L}{}$	$\frac{-X_C}{R}$	
$X_L = \omega L$	$X_C = \frac{1}{\omega C}$	$V_{source} = V_0 \sin \omega t$	$i = i_{max} \operatorname{si}$	$n(\omega t - \phi)$	
$\Delta V_{Rmax} = i_{max}R$	$\Delta V_{Lmax} = i_{max} X_L$	$\Delta V_{Cmax} = i_{max} X_C$	$V_{source\ max}$	$=i_{max}Z$	
$\Delta V_{max} = \frac{\Delta V_{pk-pk}}{2}$	$\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}$	$\omega_0 = \frac{1}{\sqrt{LC}}$		Resistivity at	Temp.
$\mathcal{P}_{avg} = I_{rms} \Delta V_{rms} \cos \phi = I_{rms}^2 R$	2-	2-	Material	20° C	Coefficient
$c = f\lambda$	$k = \frac{2\pi}{\lambda}$	$\omega = 2\pi f = \frac{2\pi}{T}$	Silver	(in SI units) 1.62 × 10 ⁻⁸	$\frac{\text{(in SI units)}}{4.1 \times 10^{-3}}$
$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_a}$	$I = C = \frac{E_{max}B_{max}}{1}$	$(1) E_{max}^2 = B_{max}^2$		1.62×10^{-8} 1.69×10^{-8}	4.1×10^{-3} 4.3×10^{-3}
μ_0	$I_{avg} = S_{avg} = \frac{E_{max}B_{max}}{2\mu_0} = \frac{E_{max}B_{max}}{2\mu_0$	$=\left(\frac{1}{c}\right)\frac{1}{2\mu_0}=c\frac{1}{2\mu_0}$	Copper Aluminum	1.69×10^{-8} 2.75×10^{-8}	4.3×10^{-3} 4.4×10^{-3}
$\frac{E_{max}}{B_{max}} = c$	$E_{\nu} = hf = \frac{hc}{\lambda}$		Nichrome	1.00×10^{-6}	0.4×10^{-3}
	, λ	Ev	Carbon	3.5×10^{-5}	-0.5×10^{-3}
$Rad.Pressure = \frac{Force}{Area} = \frac{S_{avg}}{c}$	$Photon\ momentum = p$	$\rho_{\gamma} = \frac{r}{c}$	Germanium	0.46	-48×10^{-3}

$\int \frac{x dx}{(x^2 + a^2)^{3/2}} = \frac{-1}{\sqrt{x^2 + a^2}}$	$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left x + \sqrt{x^2 \pm a^2}\right $	
$\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} = \frac{1}{a^2} \sin \theta$	$\int \frac{x \ dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}$	
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$	$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left x + \sqrt{x^2 \pm a^2} \right $	
$\int x dx = 1$	Binomial expansion:	
$\int \frac{x dx}{x^2 + a^2} = \frac{1}{2} \ln x^2 + a^2 $	$(1 \pm \delta)^n \approx 1 \pm n\delta + \cdots$	
	= 10^{-2} m = 10^{-3} $\mu = 10^{-6}$ n = 10^{-9} p = 10^{-12} f = 10^{-15}	$a = 10^{-18}$

Mp on cut if succe & put hame on this page	qt'n sheet & put name on this pa	ge.
--	----------------------------------	-----

NAME:___

Wires 1 & 2 are infinitely long (both into & out of the page).

The wires carry equal current in the directions indicated.

The wires are 7.00 cm apart from each other, centered about the x-axis.

Each wire is 7.00 cm from the *y*-axis.

Net magnetic field created by the two wires at the origin has magnitude 22.2 mT.

Note: I used random numbers, reality check might be useless.

***1a) Which best describes the signs of field components at the origin? Circle the best answers.

$B_x > 0$	$B_x = 0$	$B_x < 0$	Impossible to determine without more info
$B_y > 0$	$B_{y}=0$	$B_{y} < 0$	Impossible to determine without more info
$B_z > 0$	$B_z = 0$	$B_z < 0$	Impossible to determine without more info

1b			

A plot of impedance versus angular frequency is shown for a circuit with AC source. Impedance continues to increase past 3000 krad/s.

2a) Which of the circuits shown below is most likely to produce such a plot?

2b) Estimate the resistance of the resistor used in the circuit.

The circuit shown at right is built using a 6.00 V battery, a 2.00 mH inductor, a $30\underline{0}$ nF capacitor, and a $32.0~\Omega$ resistor. The switch is left in position **A** for a long time.

At time t = 0 the switch is changed to position **B**. A sliding switch ensures connection to **B** at the exact instant it disconnects from **A**. This prevents inductive sparking to position **A**. Furthermore, assume switching happens rapidly enough to ignore any charging of the capacitor by the battery during the switching.

Answer in engineering notation with appropriate prefix.

- **3a) What is the max energy in the fully energized inductor?
- **3b) How much time elapses before the capacitor first reaches full charge?
- **3c) What is the max charge on the capacitor?

3a	
3b	
3c	

A set of conducting rails with negligible resistance are connected using a resistor of resistance R as shown at right. To be clear, the rails lie on a flat, level horizontal surface.

A conducting rod of negligible resistance is pulled to the left with constant speed v. To be clear, this rod is always in good electrical contact with both rails.

The figure at right shows a view from directly above the rails. Angle θ is known and you may assume the rails & rod essentially form a triangular loop. At one particular instant in time, the rod is distance x from the right end of the rails. At this same instant we known current in the rod is I.

4a) What direction is the induced current flowing in the rod? Circle the best answer.

Upwards	Downwards	Impossible to determine without more info

4b) What direction is the magnetic force on the rod? Circle the best answer.

+	+î	$-\hat{\imath}$	+ĵ	$-\hat{j}$	$+\hat{k}$	$-\hat{k}$	Impossible to determine without more info
---	----	-----------------	----	------------	------------	------------	---

4c) As the rod continues moving left (at constant speed), what happens to the induced current in the rod?

Gets smaller	Stays the same	Gets larger	Impossible to determine without more info
--------------	----------------	-------------	---

*****4d) Determine the magnitude of the external magnetic field in terms of known parameters.

A series *LRC* circuit operates with a period of 55.5 μ s. Source voltage amplitude is 22.2 V, resistance is 33.3 Ω , inductance is 888 μ H, and capacitance 444 nF.

For this problem, write answers in engineering notation using the best choice of prefix.

- 5a) Determine resonance frequency (in Hz) for this circuit.
- **5b) Determine impedance at the operating frequency.
- **5c) Determine phase angle (in degrees) at the operating frequency.
- ***5d) Determine average power delivered to the resistor at the operating frequency?

5a	
5b	
5c	
5d	

5e) Which best describes the relationship between source voltage and current at this operating frequency?

Current leads	Current lags	Current & source	Current & source	Impossible to determine
source voltage	source voltage	voltage in phase	voltage out of phase	without more info

5f) Suppose the capacitor involved is a variable capacitor and we decide to slightly decrease capacitance. What should happen to the phase angle as capacitance is decreased slightly?

11	1	0 1	Θ.	,
Becomes more positive	Sta	ys the same	Becomes more negative	Impossible to determine without more info

A solid cylindrical wire of radius R is surrounded by a concentric conducting cylindrical shell. The solid wire carries non-uniform current density given by $J = kr^8$ where k is an UNKNOWN positive constant. Total current in the solid wire is I running into the page.

The outer shell has inner radius 3R, outer radius 4R, and carries the same total current directed out of the page. Figure not to scale.

Regions of space are indicated with numbers to speed up communication. One particular point in space (point **P**) is indicated in region **2** directly below the center of the solid wire.

- 6a) Determine the units for the constant k.
- 6b) Determine an expression for k in terms of I & R.
- 6c) Determine the direction of the field at the point P.
- 6d) Determine the magnetic field magnitude in region 1.
- 6e) Determine the magnetic field magnitude in region 2.
- 6f) Determine the magnetic field magnitude in region 3.
- 6g) Determine the magnetic field magnitude in region 4.

6a	
6b	
6c	
6d	
6e	
6f	
6g	

A wire is bent into the shape shown at right. The shape is essentially a square of side length 3.33 cm with half of one of the sides missing. A battery connects to the two diagonal segments far from the wire. You may assume the diagonal segments extend to infinity. The wire's current runs clockwise causing net magnetic field magnitude $222 \,\mu\text{T}$ at point **P** (center of the square).

7a) What direction does the magnetic field direction point at the point **P**?

+î	$-\hat{\iota}$	+ĵ	$-\hat{j}$	$+\hat{k}$	$-\hat{k}$	Impossible to determine without more info
----	----------------	----	------------	------------	------------	---

To ∞ P

*****7b) Determine current in the wire.

7b		

A circuit is designed as shown below. For the purposes of this question, we can model the diode as a one-way current valve. At time t = 0, as the inductor energizes, the diode acts like a break in the rightmost branch of the circuit. The circuit is allowed to reach steady state. After reaching steady state, the switch is re-opened. When the switch is re-opened, the diode acts like a short! A plot of voltage across 3R after reopening is shown below.

Answer the first three questions on this page algebraically in terms of \mathcal{E} , L, & R.

- 8a) What is voltage across the inductor just after the switch is first closed at time t = 0?
- 8b) What is steady state current through the inductor?
- **8c) What is voltage across the inductor just after the switch is re-opened?

For the 4th & 5th questions I expect numerical results.

- 8d) What is potential difference across the battery?
- ***8e) Determine resistance R assuming L = 1.23 mH.

8a	
8b	
8c	
8d	
8e	

Page intentionally left blank.