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Exam 3 Graded out of 49
Even though 53 points possible

Avg 58%, STDEV =19% 
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1a) Consider the figure at right. 
The wires are equidistant from the origin with equal current. 
By symmetry, vertical components of the field cancel (and no field in ±𝑘𝑘�). 

𝑩𝑩𝒙𝒙 < 𝟎𝟎 

𝑩𝑩𝒚𝒚 = 𝟎𝟎 

𝑩𝑩𝒛𝒛 = 𝟎𝟎 
 
 
 
 
 
 
1b) The magnitude of field created by each wire is that of an infinitely long straight wire 
in the directions shown in the top right figure. 

𝐵𝐵1 = 𝐵𝐵2 =
𝜇𝜇0𝑖𝑖
2𝜋𝜋𝜋𝜋

 

In this case 
𝜋𝜋 = 𝑟𝑟1 = 𝑟𝑟2 = �(3.50 cm)2 + (7.00 cm)2 ≈ 7.826 cm = 0.07826 m 

Here 

𝜃𝜃 = tan−1 �
3.50 cm
7.00 cm

� ≈ 26.565° 

Again using the symmetry of the problem:  

𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2𝐵𝐵2𝑥𝑥 = 2
𝜇𝜇0𝑖𝑖

2𝜋𝜋𝑟𝑟2
sin 𝜃𝜃 

Rearranging for 𝑖𝑖 gives 

𝑖𝑖 =
𝜋𝜋𝑟𝑟2𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜇𝜇0 sin𝜃𝜃

 

𝑖𝑖 ≈
𝜋𝜋(0.07826 m)(22.2 × 10−3 T)

�4𝜋𝜋 × 10−7 T ∙ m
A � sin(26.565°)

 

𝒊𝒊 ≈ 𝟗𝟗.𝟕𝟕𝟕𝟕 𝐤𝐤𝐤𝐤 
 
 
 
 
2a) The inductor in following circuit behaves as a short at low 
frequencies and break at high frequencies. 
 
 
 
 
 
 
 
2b) At extremely low frequencies the circuit is essentially DC 
(inductor has no effect on circuit).  Resistance is 𝑹𝑹 ≈ 𝟕𝟕𝟎𝟎𝟎𝟎 𝛀𝛀. 
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3a) The switch is left in position A for a long time.   
In steady state the inductor acts like a short. 
Steady state current in the left loop is thus 𝑖𝑖 = ℰ

𝑅𝑅
. 

Magnetic energy in the fully energized inductor is 

𝑈𝑈𝐿𝐿𝐿𝐿𝑡𝑡𝑥𝑥 =
1
2
𝐿𝐿𝑖𝑖2 =

ℰ2𝐿𝐿
2𝑅𝑅2

≈ 1.8904 × 10−5 J = 𝟑𝟑𝟑𝟑.𝟕𝟕𝟔𝟔 𝛍𝛍𝛍𝛍 

3b) It takes ¼ of a cycle for the first transfer of energy from the inductor to the capacitor. 

𝑡𝑡 =
1
4
𝕋𝕋 =

1
4
∙

2𝜋𝜋
𝜔𝜔0

=
1
4
∙ 2𝜋𝜋√𝐿𝐿𝐿𝐿 ≈ 𝟑𝟑𝟑𝟑.𝟑𝟑 𝛍𝛍𝛍𝛍 

3c) In this idealized circuit, there is no resistor to dissipate energy. 
As such, we expect max capacitor energy (stored in electric fields at full charge) should equal max inductor energy 
(stored in magnetic fields when fully energized). 

𝑈𝑈𝐶𝐶𝐿𝐿𝑡𝑡𝑥𝑥 =
𝑄𝑄𝐿𝐿𝑡𝑡𝑥𝑥
2

2𝐿𝐿
= 𝑈𝑈𝐿𝐿𝐿𝐿𝑡𝑡𝑥𝑥    →     𝑄𝑄𝐿𝐿𝑡𝑡𝑥𝑥 = �2𝑈𝑈𝐿𝐿𝐿𝐿𝑡𝑡𝑥𝑥𝐿𝐿 ≈ 𝟒𝟒.𝟑𝟑𝟗𝟗 𝛍𝛍𝛍𝛍 

 
4a) The figure at right shows the triangular current loop. 
As the rod moves to the left, loop area increases.   
Magnetic flux out of the page increases. 
Faraday’s law tells us induced EMF opposes the change in flux. 
In this case, induced EMF causes induced current producing into the page flux. 
Current must flow upwards in the rod. 

4b) Use a right hand rule.   
Current up in rod, 𝐵𝐵�⃑ 𝑒𝑒𝑥𝑥𝑡𝑡  directed out of page, force is to the right. 
Check: usually we expect magnetic braking (not “magnetic make you go faster”) in these 
types of problems. 

4c) The rod is pulled at constant speed but the rails keep getting farther and farther apart. 
Area should increase at a faster and faster rate. 
Induced EMF (and thus induced current in the rod) should increase. 

4d) Do SOH CAH TOA on the triangle to determine height in terms of 𝑥𝑥 & 𝜃𝜃. 

tan𝜃𝜃 =
ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡
𝑥𝑥

     →     ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 = 𝑥𝑥 tan𝜃𝜃 

Loop area is given by 

𝐴𝐴 =
1
2
𝑏𝑏𝜋𝜋𝑏𝑏𝑒𝑒 × ℎ𝑒𝑒𝑖𝑖𝑒𝑒ℎ𝑡𝑡 =

𝑥𝑥2 tan 𝜃𝜃
2

 

Now compute EMF 

𝐸𝐸𝐸𝐸𝐸𝐸 = −
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐵𝐵𝑒𝑒𝑥𝑥𝑡𝑡𝐴𝐴 cos𝜃𝜃𝐴𝐴𝐴𝐴 

WATCH OUT!  In this equation 𝜃𝜃𝐴𝐴𝐴𝐴 is not 𝜃𝜃!!!   
Here 𝜃𝜃𝐴𝐴𝐴𝐴 is the angle between the area vector (perpendicular to plane of loop) and 𝐵𝐵�⃑ 𝑒𝑒𝑥𝑥𝑡𝑡 . 
In this case 𝜃𝜃𝐴𝐴𝐴𝐴 = 0 which implies cos 𝜃𝜃𝐴𝐴𝐴𝐴 = 1. 

𝐸𝐸𝐸𝐸𝐸𝐸 = −
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐵𝐵𝑒𝑒𝑥𝑥𝑡𝑡

𝑥𝑥2 tan𝜃𝜃
2

= −𝐵𝐵𝑒𝑒𝑥𝑥𝑡𝑡
tan𝜃𝜃

2
𝒅𝒅
𝒅𝒅𝒅𝒅
𝒙𝒙𝟐𝟐 = −𝐵𝐵𝑒𝑒𝑥𝑥𝑡𝑡

tan𝜃𝜃
2

𝟐𝟐𝒙𝒙
𝒅𝒅𝒙𝒙
𝒅𝒅𝒅𝒅

= −𝐵𝐵𝑒𝑒𝑥𝑥𝑡𝑡𝒙𝒙𝒙𝒙 tan 𝜃𝜃 

We are given current is 𝐼𝐼.  Relate this to EMF (voltage) using Ohm’s Law.   
Ignore the minus sign in this case.  That was essentially used to get current direction in part 4a. 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐼𝐼𝑅𝑅 = 𝐵𝐵𝑒𝑒𝑥𝑥𝑡𝑡𝒙𝒙𝒙𝒙 tan 𝜃𝜃        →       𝑩𝑩𝒆𝒆𝒙𝒙𝒅𝒅 =
𝑰𝑰𝑹𝑹

𝒙𝒙𝒙𝒙 𝐭𝐭𝐭𝐭𝐭𝐭𝜽𝜽
 

𝑅𝑅 

𝐿𝐿 𝐿𝐿 
ℰ 

𝐤𝐤 𝐁𝐁 

𝜃𝜃 

Top View 

𝑅𝑅 

𝑥𝑥 

𝑣𝑣 

�̂�𝚤 

�̂�𝚥 

Another correct 
way to determine 
EMF: 
 
ℰ𝐿𝐿𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡 = 𝐵𝐵⊥ℓ𝑣𝑣 

 
Entire field was ⊥ 
to �⃑�𝑣 so 𝐵𝐵⊥ = 𝐵𝐵 
 

ℓ = 𝑥𝑥 tan𝜃𝜃 
 
ℰ = 𝐵𝐵𝑥𝑥𝑣𝑣 tan𝜃𝜃 
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5a) WATCH OUT! 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑚𝑚𝑡𝑡𝑚𝑚𝑟𝑟𝑒𝑒 = 𝜔𝜔0
2𝜋𝜋

= 1
2𝜋𝜋√𝐿𝐿𝐶𝐶 

= 8.02 kHz while  𝑓𝑓𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜 = 1
𝕋𝕋
≈ 18.02 kHz 

 
5b) We’ll need 𝜔𝜔𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜 = 2𝜋𝜋𝑓𝑓𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜 = 1.1321 × 105 rad

s
.   

TIP: Use the unrounded value of 𝑓𝑓𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜 to avoid intermediate rounding error! 

𝑍𝑍 = �𝑅𝑅2 + (𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶)2 

𝑍𝑍 = �𝑅𝑅2 + �𝜔𝜔𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝐿𝐿 −
1

𝜔𝜔𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜𝐿𝐿
�
2

 

𝑍𝑍 = �(33.3 Ω)2 +

⎝

⎛�1.1321 × 105
rad

s
� (888 × 10−6 H) −

1

�1.1321 × 105 rad
s � (444 × 10−9 F)

⎠

⎞

2

 

𝒁𝒁 = 𝟑𝟑𝟕𝟕.𝟐𝟐𝟒𝟒 𝛀𝛀 

5c) Use the phase angle triangle.  

𝜙𝜙 = tan−1 �
𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶

𝑅𝑅
� 

𝝓𝝓 ≈ +𝟔𝟔𝟕𝟕.𝟑𝟑𝟔𝟔° 

 
5d) 𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 = 𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅2 𝑅𝑅.  Most common errors: 𝑍𝑍 ≠ 𝑅𝑅 when 𝜔𝜔𝑡𝑡𝑜𝑜𝑒𝑒𝑟𝑟𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑜𝑜 ≠ 𝜔𝜔0, forgetting Max to RMS conversion. 

𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅

𝑍𝑍
 

𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 =
    
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝐴𝐴𝐿𝐿𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝐴𝐴𝑒𝑒

√2
    

𝑍𝑍
 

𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝐴𝐴𝐿𝐿𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝐴𝐴𝑒𝑒

√2𝑍𝑍
 

Plug into 𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 = 𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅2 𝑅𝑅: 

𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 = �
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝐴𝐴𝐿𝐿𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝐴𝐴𝑒𝑒

√2𝑍𝑍
�
2

𝑅𝑅 

𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 =
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝐴𝐴𝐿𝐿𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝐴𝐴𝑒𝑒
2 𝑅𝑅

2𝑍𝑍2
 

𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 =
(22.2 V)2(33.3 Ω)

2(87.24 Ω)2  

𝓟𝓟𝒂𝒂𝒙𝒙𝒂𝒂 ≈ 𝟕𝟕.𝟎𝟎𝟕𝟕𝟑𝟑 𝐖𝐖 
Alternative style:  

𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 = 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅 cos𝜙𝜙 

𝒫𝒫𝑡𝑡𝑎𝑎𝑜𝑜 = �
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝐴𝐴𝐿𝐿𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝐴𝐴𝑒𝑒

√2𝑍𝑍
� �
𝑉𝑉𝑟𝑟𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑒𝑒 𝐴𝐴𝐿𝐿𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝐴𝐴𝑒𝑒

√2
� �
𝑅𝑅
𝑍𝑍
� 

 
5e) Positive phase angle implies 𝑋𝑋𝐿𝐿 > 𝑋𝑋𝐶𝐶 .  Inductor is dominating the circuit.  Use ELI from ELI the ICE freak. 
Current lags source voltage (I comes after E in ELI).  Note: you could also say voltage leads current if you want. 
 
5f) If 𝐿𝐿 decreases 𝑋𝑋𝐶𝐶 = 1

𝜔𝜔𝐶𝐶
 increases.  Notice 𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶  is more negative.  Phase angle becomes more negative.  

𝜙𝜙 
𝑅𝑅 

𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶 
𝑍𝑍 

𝜙𝜙 
𝑅𝑅 

𝑋𝑋𝐿𝐿 − 𝑋𝑋𝐶𝐶 
𝑍𝑍 
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6a) [𝑘𝑘] = [𝐽𝐽]
[𝑟𝑟]8

= 𝐤𝐤
𝐦𝐦𝟕𝟕𝟎𝟎 

6b) For non-uniform density 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝐽𝐽 𝑑𝑑𝐴𝐴
𝑅𝑅𝑓𝑓

𝑅𝑅𝑖𝑖
 

𝐼𝐼 = � 𝑘𝑘�̃�𝑟8 2𝜋𝜋�̃�𝑟 𝑑𝑑�̃�𝑟
𝑅𝑅

0
 

𝐼𝐼 = 2𝜋𝜋𝑘𝑘 � �̃�𝑟9 𝑑𝑑�̃�𝑟
𝑅𝑅

0
 

𝐼𝐼 = 2𝜋𝜋𝑘𝑘 �
�̃�𝑟10

10
�
0

𝑅𝑅

 

𝐼𝐼 =
𝜋𝜋𝑘𝑘𝑅𝑅10

5
 

𝒌𝒌 =
𝟑𝟑𝑰𝑰
𝝅𝝅𝑹𝑹𝟕𝟕𝟎𝟎

 

6c) By symmetry, outer shell has no effect on field direction at 𝐏𝐏. 
Current for inner shell is directed into the page. 
Right hand rule gives magnetic field direction at 𝐏𝐏 upwards (+𝚥𝚥̂). 
 
6d) Use Ampere’s law using the Amperian loop in region 1 (shown at right). 

𝐵𝐵1𝑏𝑏 = 𝜇𝜇0𝐼𝐼𝑒𝑒𝑚𝑚𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑒𝑒𝐴𝐴  

𝐵𝐵1(2𝜋𝜋𝑟𝑟) = 𝜇𝜇0 � 𝑘𝑘�̃�𝑟8 2𝜋𝜋�̃�𝑟 𝑑𝑑�̃�𝑟
𝑟𝑟

0
 

𝐵𝐵1(2𝜋𝜋𝑟𝑟) = 𝜇𝜇0
𝜋𝜋𝑘𝑘𝑟𝑟10

5
 

𝐵𝐵1(2𝜋𝜋𝑟𝑟) = 𝜇𝜇0
𝜋𝜋 � 5𝐼𝐼

𝜋𝜋𝑅𝑅10� 𝑟𝑟
10

5
 

𝑩𝑩𝟕𝟕 =
𝝁𝝁𝟎𝟎𝑰𝑰𝒓𝒓𝟗𝟗

𝟐𝟐𝝅𝝅𝑹𝑹𝟕𝟕𝟎𝟎
 

6e) In region 2 we are completely outside the wire, enclosing all current from region 1. 

𝑩𝑩𝟐𝟐 = 𝑩𝑩∞ 𝒔𝒔𝒅𝒅𝒓𝒓𝒂𝒂𝒊𝒊𝒂𝒂𝒔𝒔𝒅𝒅 𝒘𝒘𝒊𝒊𝒓𝒓𝒆𝒆 =
𝝁𝝁𝟎𝟎𝑰𝑰
𝟐𝟐𝝅𝝅𝒓𝒓

 

6f) In region 3 all current from region 1 but only some current from region 3 is enclosed. 
Furthermore, because currents run in opposite directions: 

𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡3 = 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑟𝑟 − 𝐵𝐵𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑟𝑟  

𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡3 =
𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑟𝑟

−
𝜇𝜇0𝐼𝐼
2𝜋𝜋𝑟𝑟

∙
𝐴𝐴𝑡𝑡𝐿𝐿𝑜𝑜𝑒𝑒𝑟𝑟𝑚𝑚𝑡𝑡𝑚𝑚
𝐴𝐴𝑟𝑟𝑒𝑒𝑜𝑜𝑚𝑚𝑡𝑡𝑚𝑚 3

 

𝑩𝑩𝒅𝒅𝒕𝒕𝒅𝒅𝟑𝟑 =
𝝁𝝁𝟎𝟎𝑰𝑰
𝟐𝟐𝝅𝝅𝒓𝒓

�𝟕𝟕 −
(𝒓𝒓𝟐𝟐 − 𝟗𝟗𝑹𝑹𝟐𝟐)

𝟕𝟕𝑹𝑹𝟐𝟐
� =

𝝁𝝁𝟎𝟎𝑰𝑰
𝟐𝟐𝝅𝝅𝒓𝒓

�
𝟕𝟕𝟔𝟔𝑹𝑹𝟐𝟐 − 𝒓𝒓𝟐𝟐

𝟕𝟕𝑹𝑹𝟐𝟐
� =

𝝁𝝁𝟎𝟎𝑰𝑰
𝟐𝟐𝝅𝝅𝒓𝒓

∙
𝟕𝟕𝟔𝟔 − 𝒓𝒓𝟐𝟐

𝑹𝑹𝟐𝟐
𝟕𝟕

 

 
6g) The net current enclosed is zero.  No magnetic field. 
  

𝐏𝐏 
𝟕𝟕 
𝟐𝟐 
𝟑𝟑 
𝟒𝟒 

𝑥𝑥 

𝑦𝑦 

𝟕𝟕 
𝟐𝟐 
𝟑𝟑 
𝟒𝟒 

𝑥𝑥 

𝑦𝑦 

𝟕𝟕 
𝟐𝟐 
𝟑𝟑 
𝟒𝟒 

𝑥𝑥 

𝑦𝑦 



Version B (Yellow) 

7a) Use the right-hand rule on standard coordinates. Clockwise current produces field in −𝑘𝑘�  direction. 
 
7b) Consider the thick red line segment shown at right. 
Total field should be 7 times the contribution from this segment. 

𝐵𝐵 = 7 �
𝜇𝜇0𝐼𝐼
4𝜋𝜋𝜋𝜋

�sin𝜃𝜃𝑓𝑓 − sin𝜃𝜃𝑚𝑚�� 

Here 𝜋𝜋 = 𝑟𝑟
2
 is perpendicular bisector distance. 

Note: since we already know the direction from part a, I will 
assume angles to the LEFT of the perpendicular bisector are 
positive.  This gives me a positive field magnitude as expected. 

𝐵𝐵 = 7�
𝜇𝜇0𝐼𝐼

   4𝜋𝜋 𝑏𝑏2   
[sin 45° − sin 0°]� 

𝐵𝐵 =
7𝜇𝜇0𝐼𝐼

   2𝜋𝜋𝑏𝑏  
�
√2
2
− 0� 

𝐵𝐵 =
7√2𝜇𝜇0𝐼𝐼
   4𝜋𝜋𝑏𝑏  

 

𝐼𝐼 =
4𝜋𝜋𝐵𝐵𝑏𝑏

7√2𝜇𝜇0
 

𝑰𝑰 ≈ 𝟕𝟕.𝟒𝟒𝟕𝟕 𝐤𝐤 
  

To ∞ 
𝐏𝐏 

𝑏𝑏
2

 

0° 

45° 
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8a & 8b) I think these parts are best explain by drawing a set of 𝑡𝑡 = 0+ and 𝑡𝑡 = ∞ pictures. 
To be clear, these pictures are 𝑡𝑡 = 0+ and 𝑡𝑡 = ∞ for the switch being closed. 
In each circuit the current path is shown with a thick red dotted line. 

 
8c) This was a 1 pointer. Again, probably easiest to start by drawing a set of 𝑡𝑡 = 0+ and 𝑡𝑡 = ∞ pictures. 
To be clear, these pictures are 𝑡𝑡 = 0+ and 𝑡𝑡 = ∞ for the switch being re-opened. 
In each circuit the current path is shown with a thick red dotted line. 

 
8d) Compare the plot at right to the result of part 8c. 

Δ𝑉𝑉3𝑅𝑅 MAX =
3
4
ℰ = 800 V 

ℰ = 1067 V 
 
8e) From part 8c I can write 

Δ𝑉𝑉3𝑅𝑅(𝑡𝑡) =  Δ𝑉𝑉3𝑅𝑅 MAX𝑒𝑒−𝑡𝑡/𝜏𝜏      using  𝜏𝜏 =
𝐿𝐿

3𝑅𝑅
 

From the plot Δ𝑉𝑉3𝑅𝑅(𝑡𝑡) = 300 V at 𝑡𝑡 = 40 μs. 
Δ𝑉𝑉3𝑅𝑅(𝑡𝑡)
Δ𝑉𝑉3𝑅𝑅 MAX

=  𝑒𝑒−𝑡𝑡/𝜏𝜏 

−
𝑡𝑡

   � 𝐿𝐿3𝑅𝑅�   
= ln

Δ𝑉𝑉3𝑅𝑅(𝑡𝑡)
Δ𝑉𝑉3𝑅𝑅 MAX

 

𝑅𝑅 = −
𝐿𝐿
3𝑡𝑡

ln
Δ𝑉𝑉3𝑅𝑅(𝑡𝑡)
Δ𝑉𝑉3𝑅𝑅 MAX

 

𝑅𝑅 ≈ 10.05 Ω 

Using Δ𝑉𝑉3𝑅𝑅(𝑡𝑡) = 500 V at 𝑡𝑡 = 20 μs gave 𝑅𝑅 ≈ 9.7 Ω. 

There is no reason to assume the biggest time on a graph just happens to equal 𝟑𝟑𝟓𝟓.  No credit for such work. 

𝑅𝑅 3𝑅𝑅 

Inductor acts like a break 
just after switch closed. 

No current flow. 

All voltage across inductor. 
Δ𝑉𝑉𝐿𝐿 = ℰ 

ℰ 

𝑅𝑅 3𝑅𝑅 

ℰ 

Inductor acts like a short in 
steady state (long after 
switch closed. 
  

𝑖𝑖 =
ℰ
𝑅𝑅𝑒𝑒𝑒𝑒

=
ℰ

4𝑅𝑅
 

𝒅𝒅 = 𝟎𝟎+ 
Just after switch closed 

𝒅𝒅 = ∞ (steady state) 
Long time after switch closed 

𝐿𝐿 𝐿𝐿 

The energy source in this 
circuit was the magnetic field 
energy (not a battery). 
 
Eventually all current dies 
out. 
 
No voltage across anything. 

Inductor preserves current 
just after switch re-opened. 

𝑖𝑖 =
ℰ

4𝑅𝑅
 

Δ𝑉𝑉3𝑅𝑅 = 𝑖𝑖(3𝑅𝑅) =
𝟑𝟑
𝟒𝟒
𝓔𝓔 

KVL gives 𝚫𝚫𝑽𝑽𝑳𝑳 = 𝚫𝚫𝑽𝑽𝟑𝟑𝑹𝑹 

𝒅𝒅 = 𝟎𝟎+ 
Just after switch re-opened 

𝒅𝒅 = ∞ (steady state) 
Long time after switch re-opened 

3𝑅𝑅 3𝑅𝑅 

𝐿𝐿 𝐿𝐿 

0

100

200

300

400

500

600

700

800

0 100 200 300

∆V3R (V)

t (µs)


