
Most common coding Q’s I have been getting:

1) For non-uniform distributions (for example = 𝑐𝑐𝑥𝑥9) we use the following process to figure out a good
number for the numerical constant in the density function (in this case 𝑐𝑐).

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑑𝑑𝑑𝑑
𝑓𝑓

𝑖𝑖

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝜆𝜆 𝑑𝑑𝑥𝑥
𝑓𝑓

𝑖𝑖

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝑐𝑐𝑥𝑥9 𝑑𝑑𝑥𝑥
𝑓𝑓

𝑖𝑖

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑐𝑐

10
[𝑥𝑥9]𝑖𝑖

𝑓𝑓

Rearrange to solve this for the constant!
𝑐𝑐 = 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 × (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 #′𝑠𝑠)

At the top of your code, you probably have a constant something like Q = 1e-12.
You also have the other constants which appear in your formula for the density’s numerical density (i.e 𝑐𝑐).
Make the code compute your numerical constant using the formula you derive.

2) For non-uniform density with total charge zero (i.e. half the rod is positive and half is negative) the above
process needs a slight modification. Do the above process for the positive half of the rod only. This means
do the exact same thing but use 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡

2
 and change your limits of integration to include only the positive half

of the rod.

3) If using an arc instead of a rod use 𝑑𝑑𝑠𝑠 instead of 𝑑𝑑𝑥𝑥 to derive your formula for the numerical constant.
THINK: for an arc 𝑑𝑑𝑠𝑠 = 𝑅𝑅 𝑑𝑑𝑑𝑑.

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝜆𝜆 𝑑𝑑𝑠𝑠
𝑓𝑓

𝑖𝑖
= � 𝜆𝜆 𝑅𝑅 𝑑𝑑𝑑𝑑

𝑓𝑓

𝑖𝑖

4) If you wish to verify your rod has the correct charge (to verify you did the above steps correctly) do the

following:
a. Before the FOR loop which draws the balls, initialize a constant: Q_check = 0 .
b. Inside the FOR loop drawing the balls, AFTER you wrote ball.dq = lambda * dx, put in a

line of code that says Q_check += ball.dq.
c. After the FOR loop, put in a print statement for Q_check.
d. Hopefully you discover Q_check is approximately equal to the total amount of charge we expect

from a paper & pencil calculation.
e. For non-uniform cases with total charge zero, you could modify the above work with an absolute

value function (Q_check += abs(ball.dq)).

5) People get confused on 22.24 (non-uni arc) due to the coordinate system. I am not offended if you use the
standard coordinates and use angles radians(−45°) to 𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠(+45°). This essentially does the problem.

If you really want to rotate the system, modify the ball positions in the for loop as follows:
ball.pos = -1 * R * vec(cos(pi/2-theta), sin(pi/2-theta), 0)
You will also need to play around with theta_min and theta_max.
I think you might try angles like radians(135), radians(225), etc.
May need to play around with minus signs as well (possibly adding a minus sign to the density constant).

