Most common coding Q’s I have been getting:

1) For non-uniform distributions (for example = cx®) we use the following process to figure out a good

2)

3)

4)

5)

number for the numerical constant in the density function (in this case c).

f
Qtor = f dq

f
Qtor = f Adx

f
Qtot :f cx® dx
i

c
_ f
Qtor = 10 [xg]i

Rearrange to solve this for the constant!
¢ = Qior X (some #'s)
At the top of your code, you probably have a constant something like Q = le-12.
You also have the other constants which appear in your formula for the density’s numerical density (i.e ¢).
Make the code compute your numerical constant using the formula you derive.

For non-uniform density with total charge zero (i.e. half the rod is positive and half is negative) the above

process needs a slight modification. Do the above process for the positive half of the rod only. This means

Qtot

do the exact same thing but use 5

of the rod.

and change your limits of integration to include only the positive half

If using an arc instead of a rod use ds instead of dx to derive your formula for the numerical constant.
THINK: for an arc ds = R df.

f f
thzf Adszf ARdO
i i

If you wish to verify your rod has the correct charge (to verify you did the above steps correctly) do the
following:
a. Before the FOR loop which draws the balls, initialize a constant: 9 check = 0.
b. Inside the FOR loop drawing the balls, AFTER you wrote ball.dq = lambda * dx,putina
line of code that says 0 check += ball.daq.
c. After the FOR loop, put in a print statement for 0 check.
Hopefully you discover Q check is approximately equal to the total amount of charge we expect
from a paper & pencil calculation.
e. For non-uniform cases with total charge zero, you could modify the above work with an absolute
value function (Q check += abs(ball.dq)).

People get confused on 22.24 (non-uni arc) due to the coordinate system. I am not offended if you use the
standard coordinates and use angles radians(—45°) to radians(+45°). This essentially does the problem.

If you really want to rotate the system, modify the ball positions in the for loop as follows:

ball.pos = -1 * R * vec(cos(pi/2-theta), sin(pi/2-theta), 0)

You will also need to play around with theta min and theta max.

I think you might try angles like radians (135), radians (225), etc.

May need to play around with minus signs as well (possibly adding a minus sign to the density constant).

